Menu Close

Category: Trigonometry

BEMATH-If-tan-x-sec-x-b-cos-x-

Question Number 107364 by bemath last updated on 10/Aug/20 $$\:\:\:\:\:\:\circledcirc\mathscr{BEMATH}\circledcirc\: \\ $$$${If}\:\mathrm{tan}\:{x}+\mathrm{sec}\:{x}\:=\:{b}\:\Rightarrow\:\mathrm{cos}\:{x}\:=\:? \\ $$ Answered by bobhans last updated on 10/Aug/20 $$\:\:\:\:\:\:\Rrightarrow\mathbb{BOB}\mathcal{HANS}\Lleftarrow \\ $$$$\frac{\mathrm{tan}\:\mathrm{x}−\mathrm{sec}\:\mathrm{x}}{\mathrm{tan}\:\mathrm{x}−\mathrm{sec}\:\mathrm{x}}\:×\:\mathrm{tan}\:\mathrm{x}+\mathrm{sec}\:\mathrm{x}\:=\:\flat \\…

sin-cos-1-2-sin-4-cos-4-

Question Number 172732 by depressiveshrek last updated on 30/Jun/22 $$\mathrm{sin}\theta−\mathrm{cos}\theta=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{sin}^{\mathrm{4}} \theta+\mathrm{cos}^{\mathrm{4}} \theta=? \\ $$ Answered by floor(10²Eta[1]) last updated on 30/Jun/22 $$\left(\mathrm{sin}\theta−\mathrm{cos}\theta\right)^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{4}}=\mathrm{1}−\mathrm{sin}\left(\mathrm{2}\theta\right)…

Question-172608

Question Number 172608 by Mikenice last updated on 29/Jun/22 Answered by FelipeLz last updated on 03/Jul/22 $${f}\left({x}\right)\:=\:{x}−\mathrm{sin}\left({x}\right) \\ $$$$\int\frac{{x}\mathrm{cos}\left({x}\right)−\mathrm{sin}\left({x}\right)}{\left[{x}−\mathrm{sin}\left({x}\right)\right]^{\mathrm{2}} }{dx} \\ $$$$\int\frac{{x}\mathrm{cos}\left({x}\right)−{x}+{x}−\mathrm{sin}\left({x}\right)}{\left[{x}−\mathrm{sin}\left({x}\right)\right]^{\mathrm{2}} }{dx} \\ $$$$\int\frac{\left[{x}−\mathrm{sin}\left({x}\right)\right]−{x}\left[\mathrm{1}−\mathrm{cos}\left({x}\right)\right]}{\left[{x}−\mathrm{sin}\left({x}\right)\right]^{\mathrm{2}}…

Given-f-x-10-2-sin-2x-Find-maximum-value-f-x-

Question Number 107018 by bemath last updated on 08/Aug/20 $$\mathcal{G}{iven}\:{f}\left({x}\right)=\frac{\mathrm{10}}{\mathrm{2}−\mathrm{sin}\:\mathrm{2}{x}}.\:{Find}\:{maximum}\:{value}\: \\ $$$${f}\left({x}\right). \\ $$ Commented by PRITHWISH SEN 2 last updated on 08/Aug/20 $$\mathrm{for}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{to}\:\mathrm{be}\:\mathrm{max}.\:\mathrm{2}−\mathrm{sin}\:\mathrm{2x}\:\mathrm{must}\:\mathrm{be}\:\mathrm{min}.\: \\…

Given-that-cos-pi-3-1-2-find-the-values-of-inthe-range-0-360-

Question Number 41444 by Rio Michael last updated on 07/Aug/18 $${Given}\:{that}\:\:\:{cos}\left(\theta\:+\:\frac{\pi}{\mathrm{3}}\right)=\:\frac{\mathrm{1}}{\mathrm{2}}\:{find}\:{the}\:{values}\:{of}\:\theta\:{inthe}\:{range}\:\:\mathrm{0}°\leqslant\:\theta\leqslant\mathrm{360}° \\ $$ Commented by maxmathsup by imad last updated on 07/Aug/18 $${cos}\left(\theta\:+\frac{\pi}{\mathrm{3}}\right)\:=\frac{\mathrm{1}}{\mathrm{2}}\:\Leftrightarrow\:{cos}\left(\theta\:+\frac{\pi}{\mathrm{3}}\right)={cos}\left(\frac{\pi}{\mathrm{3}}\right)\Leftrightarrow\theta\:+\frac{\pi}{\mathrm{3}}\:=\frac{\pi}{\mathrm{3}}\:+\mathrm{2}{k}\pi\:{or} \\ $$$$\theta\:+\frac{\pi}{\mathrm{3}}=−\frac{\pi}{\mathrm{3}}\:+\mathrm{2}{k}\pi\:\left({k}\in{Z}\right)\Leftrightarrow\:\:\theta=\mathrm{2}{k}\pi\:\:{or}\:\theta\:=−\frac{\mathrm{2}\pi}{\mathrm{3}}\:+\mathrm{2}{k}\pi\:\:{now}\:{let}\:{sove}\:{in}\left[\mathrm{0},\mathrm{2}\pi\right]…

bemath-1-Given-x-sin-sin-y-cos-cos-maximum-value-of-x-2-y-2-when-2-find-solution-set-the-equation-sin-4-x-sin-4-x-pi-4-1-4-where-x-0-2pi-

Question Number 106958 by bemath last updated on 08/Aug/20 $$\:\:\:@{bemath}@ \\ $$$$\left(\mathrm{1}\right)\:{Given}\:\begin{cases}{{x}=\mathrm{sin}\:\alpha+\mathrm{sin}\:\beta}\\{{y}=\mathrm{cos}\:\alpha+\mathrm{cos}\:\beta}\end{cases} \\ $$$${maximum}\:{value}\:{of}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \:{when}\:\alpha=… \\ $$$$\left(\mathrm{2}\right)\:{find}\:{solution}\:{set}\:{the}\:{equation} \\ $$$$\mathrm{sin}\:^{\mathrm{4}} {x}\:+\:\mathrm{sin}\:^{\mathrm{4}} \left({x}+\frac{\pi}{\mathrm{4}}\right)=\frac{\mathrm{1}}{\mathrm{4}}\:{where}\:{x}\:\in\:\left[\mathrm{0},\mathrm{2}\pi\right]\: \\ $$ Answered…

bemath-Given-2cos-x-7cos-y-5-2sin-x-7sin-y-6-cos-x-y-

Question Number 106950 by bemath last updated on 08/Aug/20 $$\:\:\:\:\:\:\:\:\:\:^{@{bemath}@} \\ $$$${Given}\:\begin{cases}{\mathrm{2cos}\:{x}+\mathrm{7cos}\:{y}\:=\mathrm{5}}\\{\mathrm{2sin}\:{x}+\mathrm{7sin}\:{y}\:=\:\mathrm{6}}\end{cases} \\ $$$$\mathrm{cos}\:\left({x}−{y}\right)\:=?\: \\ $$ Answered by john santu last updated on 08/Aug/20 $$\:\:\:\:\:\:\:\:\:\blacklozenge\mathrm{JS}\lozenge…

If-i-1-n-sin-i-n-then-cos-1-cos-2-cos-3-cos-n-i-got-0-as-answer-please-who-can-correct-

Question Number 106944 by Rio Michael last updated on 08/Aug/20 $$\mathrm{If}\:\underset{{i}=\:\mathrm{1}} {\overset{{n}} {\sum}}\:\mathrm{sin}\:\left(\theta_{{i}} \right)\:=\:{n}\:\mathrm{then}\:\:\mathrm{cos}\:\left(\theta_{\mathrm{1}} \right)\:+\:\mathrm{cos}\:\left(\theta_{\mathrm{2}} \right)\:+\:\mathrm{cos}\:\left(\theta_{\mathrm{3}} \right)\:+\:…\:+\:\mathrm{cos}\:\left(\theta_{{n}} \right)\:=\:? \\ $$$$\mathrm{i}\:\mathrm{got}\:\mathrm{0}\:\mathrm{as}\:\mathrm{answer}.\:\mathrm{please}\:\mathrm{who}\:\mathrm{can}\:\mathrm{correct}? \\ $$ Commented by mr…