Menu Close

Category: Trigonometry

If-asin-bcos-2ctan-1-tan-2-then-prove-that-a-2-b-2-2-4c-2-a-2-b-2-

Question Number 206471 by MATHEMATICSAM last updated on 15/Apr/24 $$\mathrm{If}\:{a}\mathrm{sin}\theta\:=\:{b}\mathrm{cos}\theta\:=\:\frac{\mathrm{2}{c}\mathrm{tan}\theta}{\mathrm{1}\:−\:\mathrm{tan}^{\mathrm{2}} \theta}\:\mathrm{then}\:\mathrm{prove} \\ $$$$\mathrm{that}\:\left({a}^{\mathrm{2}} \:−\:{b}^{\mathrm{2}} \right)^{\mathrm{2}} \:=\:\mathrm{4}{c}^{\mathrm{2}} \left({a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} \right). \\ $$ Answered by lepuissantcedricjunior last…

If-tan-2-1-x-2-then-prove-that-sec-tan-3-cosec-2-x-2-3-

Question Number 206434 by MATHEMATICSAM last updated on 14/Apr/24 $$\mathrm{If}\:\mathrm{tan}^{\mathrm{2}} \theta\:=\:\mathrm{1}\:−\:{x}^{\mathrm{2}} \:\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\mathrm{sec}\theta\:+\:\mathrm{tan}^{\mathrm{3}} \theta\mathrm{cosec}\theta\:=\:\sqrt{\left(\mathrm{2}\:−\:{x}^{\mathrm{2}} \right)^{\mathrm{3}} }\:. \\ $$ Answered by TonyCWX08 last updated on…

If-tanp-ptan-then-prove-that-sin-2-p-sin-2-p-2-1-p-2-1-sin-2-

Question Number 206421 by MATHEMATICSAM last updated on 13/Apr/24 $$\mathrm{If}\:\mathrm{tan}{p}\theta\:=\:{p}\mathrm{tan}\theta\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\frac{\mathrm{sin}^{\mathrm{2}} {p}\theta}{\mathrm{sin}^{\mathrm{2}} \theta}\:=\:\frac{{p}^{\mathrm{2}} }{\mathrm{1}\:+\:\left({p}^{\mathrm{2}} \:−\:\mathrm{1}\right)\mathrm{sin}^{\mathrm{2}} \theta}\:.\: \\ $$ Answered by Frix last updated on…

If-1-2-pi-cos-1-1-4-log-2-1-cos-6-cos-6-

Question Number 205429 by mnjuly1970 last updated on 21/Mar/24 $$ \\ $$$$\:\mathrm{I}{f},\:\:\varphi\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\left(\pi\:−{cos}^{\:−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{4}}\:\right)\right) \\ $$$$ \\ $$$$\:\:\:\Rightarrow\:\mathrm{log}_{\:\mathrm{2}} \left(\:\frac{\:\mathrm{1}+\:{cos}\left(\mathrm{6}\varphi\:\right)}{{cos}^{\mathrm{6}} \left(\varphi\:\right)}\:\right)\:=? \\ $$$$ \\ $$ Answered by…

Question-205403

Question Number 205403 by BaliramKumar last updated on 20/Mar/24 Answered by Rajpurohith last updated on 20/Mar/24 $${Clearly}\:\mathrm{cot}^{\mathrm{2}} \left({A}\right)\left(\mathrm{1}+\mathrm{cot}^{\mathrm{2}} \left({A}\right)\right)=\mathrm{1} \\ $$$${i}.{e},\mathrm{cot}^{\mathrm{2}} \left({A}\right)\left(\mathrm{cosec}^{\mathrm{2}} \left({A}\right)\right)=\mathrm{1} \\ $$$$\Rightarrow\frac{\mathrm{cos}^{\mathrm{2}}…