Menu Close

Category: Trigonometry

Question-100870

Question Number 100870 by bramlex last updated on 29/Jun/20 Commented by bemath last updated on 29/Jun/20 $$\pi−\mathrm{e}\:=\:\mathrm{0}.\mathrm{4233} \\ $$$$\left(\pi−\mathrm{e}\right)^{\mathrm{ln}\left(\mathrm{1}−\mathrm{2cos}\:^{\mathrm{2}} \mathrm{x}\right)} \:\geqslant\:\left(\pi−\mathrm{e}\right)^{\mathrm{0}} \\ $$$$\mathrm{case}\left(\mathrm{1}\right)\Rightarrow\mathrm{ln}\left(\mathrm{1}−\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}\:\mathrm{2x}\right)\right)\leqslant\:\mathrm{0} \\ $$$$\mathrm{ln}\left(−\mathrm{cos}\:\mathrm{2x}\right)\:\leqslant\:\mathrm{0}\:\Rightarrow−\mathrm{cos}\:\mathrm{2x}\:\leqslant\:\mathrm{1}…

sin-10x-sin-2x-cos-10x-cos-2x-

Question Number 166360 by mathlove last updated on 19/Feb/22 $$\frac{\mathrm{sin}\:\mathrm{10}{x}}{{sin}\:\mathrm{2}{x}}−\frac{\mathrm{cos}\:\mathrm{10}{x}}{\mathrm{cos}\:\mathrm{2}{x}}=? \\ $$ Answered by som(math1967) last updated on 19/Feb/22 $$\frac{\boldsymbol{{sin}}\mathrm{10}\boldsymbol{{xcos}}\mathrm{2}\boldsymbol{{x}}−\boldsymbol{{cos}}\mathrm{10}\boldsymbol{{xsin}}\mathrm{2}\boldsymbol{{x}}}{\boldsymbol{{sin}}\mathrm{2}\boldsymbol{{xcos}}\mathrm{2}\boldsymbol{{x}}} \\ $$$$=\frac{\boldsymbol{{sin}}\left(\mathrm{10}\boldsymbol{{x}}−\mathrm{2}\boldsymbol{{x}}\right)}{\boldsymbol{{sin}}\mathrm{2}\boldsymbol{{xcos}}\mathrm{2}\boldsymbol{{x}}}=\frac{\mathrm{2}\boldsymbol{{sin}}\mathrm{8}\boldsymbol{{x}}}{\mathrm{2}\boldsymbol{{sin}}\mathrm{2}\boldsymbol{{xcos}}\mathrm{2}\boldsymbol{{x}}} \\ $$$$=\frac{\mathrm{4}\boldsymbol{{sin}}\mathrm{4}\boldsymbol{{xcos}}\mathrm{4}\boldsymbol{{x}}}{\boldsymbol{{sin}}\mathrm{4}\boldsymbol{{x}}}=\mathrm{4}\boldsymbol{{cos}}\mathrm{4}\boldsymbol{{x}} \\…

Question-100695

Question Number 100695 by john santu last updated on 28/Jun/20 Commented by bobhans last updated on 28/Jun/20 $$\mathrm{sin}\:\mathrm{18}\:=\:\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{4}}\:,\:\mathrm{sin}\:\mathrm{54}\:=\:\mathrm{cos}\:\mathrm{36}\:=\:\mathrm{1}−\mathrm{2sin}\:^{\mathrm{2}} \mathrm{18} \\ $$$$\mathrm{sin}\:\mathrm{54}\:=\:\mathrm{1}−\mathrm{2}\left(\frac{\mathrm{6}−\mathrm{2}\sqrt{\mathrm{5}}}{\mathrm{16}}\right)\:=\:\mathrm{1}−\left(\frac{\mathrm{3}−\sqrt{\mathrm{5}}}{\mathrm{4}}\right)=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{4}} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{18}}\:−\:\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{54}}\:=\:\frac{\mathrm{4}}{\:\sqrt{\mathrm{5}}−\mathrm{1}}\:−\:\frac{\mathrm{4}}{\:\sqrt{\mathrm{5}}+\mathrm{1}} \\ $$$$=\:\mathrm{4}\left(\frac{\sqrt{\mathrm{5}}+\mathrm{1}−\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{4}}\right)\:=\:\mathrm{2}…

prove-r-1-x-r-1-2-pi-tan-x-r-1-x-r-r-1-x-r-pi-2-4-r-odd-r-even-

Question Number 166168 by alcohol last updated on 14/Feb/22 $${prove} \\ $$$$\underset{{r}=−\infty} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{x}\:+\:\left({r}+\frac{\mathrm{1}}{\mathrm{2}}\right)\pi}\:=\:{tan}\left({x}\right) \\ $$$$\left(\underset{{r}=−\infty} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{x}\:+\:{r}}\right)\left(\underset{{r}=−\infty} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{x}\:+\:{r}}\right)\:=\:−\frac{\pi^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\:\:\:\:\:\left(\:{r}\:=\:{odd}\right)\:\:\:\:\:\:\:\:\left({r}\:=\:{even}\right) \\ $$…

tan-a-b-1-17-tan-a-b-11-13-tan2a-tan2b-

Question Number 166170 by mathls last updated on 14/Feb/22 $${tan}\left({a}+{b}\right)=\frac{\mathrm{1}}{\mathrm{17}}\:\:\:,\:\:\:{tan}\left({a}−{b}\right)=\frac{\mathrm{11}}{\mathrm{13}} \\ $$$${tan}\mathrm{2}{a}=?\:\:\:\:\:\:{tan}\mathrm{2}{b}=? \\ $$ Answered by cortano1 last updated on 14/Feb/22 $$\Rightarrow\mathrm{2}{a}\:=\:\left({a}+{b}\right)+\left({a}−{b}\right) \\ $$$$\Rightarrow\mathrm{tan}\:\mathrm{2}{a}\:=\frac{\frac{\mathrm{1}}{\mathrm{17}}+\frac{\mathrm{11}}{\mathrm{13}}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{17}}.\frac{\mathrm{11}}{\mathrm{13}}}\:=\:\frac{\mathrm{20}}{\mathrm{21}} \\…

If-cos45-1-2-Find-cos45-1-

Question Number 34980 by NECx last updated on 14/May/18 $${If}\:{cos}\mathrm{45}°\:=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:.\:{Find}\:{cos}\mathrm{45}.\mathrm{1}° \\ $$ Answered by ajfour last updated on 14/May/18 $$\mathrm{cos}\:\left(\frac{\pi}{\mathrm{4}}+\frac{\pi}{\mathrm{1800}}\right)\approx\mathrm{cos}\:\left(\frac{\pi}{\mathrm{4}}\right)−\frac{\pi}{\mathrm{1800}}\mathrm{sin}\:\frac{\pi}{\mathrm{4}} \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\left(\mathrm{1}−\frac{\pi}{\mathrm{1800}}\right)\:=\mathrm{0}.\mathrm{707}\left(\mathrm{1}−\frac{\mathrm{0}.\mathrm{0314}}{\mathrm{18}}\right) \\ $$$$\:\:\:=\mathrm{0}.\mathrm{707}\left(\mathrm{1}−\mathrm{0}.\mathrm{00173}\right) \\…