Menu Close

Category: Vector

Question-44020

Question Number 44020 by rahul 19 last updated on 20/Sep/18 Answered by tanmay.chaudhury50@gmail.com last updated on 20/Sep/18 $$\overset{\rightarrow} {{a}}.\overset{\rightarrow} {{d}}=\mid\overset{\rightarrow} {{a}}\mid{cos}\theta_{\mathrm{1}} \:\:\:\:\overset{\rightarrow} {{b}}.\overset{\rightarrow} {{d}}=\mid\overset{\rightarrow} {{b}}\mid{cos}\theta_{\mathrm{2}}…

The-points-A-B-and-C-have-position-vectors-a-b-and-c-respectively-reffrred-to-an-origin-O-i-Given-that-the-point-X-lie-on-AB-produced-so-that-AB-BX-2-1-find-x-the-position-vector-of-X-in-terms

Question Number 174489 by pete last updated on 02/Aug/22 ThepointsA,BandChavepositionvectorsa,bandcrespectivelyreffrredtoanoriginO.i.GiventhatthepointXlieonABproducedsothatAB:BX=2:1,findx,thepositionvectorofXintermsofbandc.ii.ifYliesonBC,betweenBandCsothatBY:YC=1:3,findy,thepositionvector$$\mathrm{of}\:\mathrm{Y}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\boldsymbol{\mathrm{b}}\:\mathrm{and}\:\boldsymbol{\mathrm{c}}. \

Solve-p-2-2p-1-q-2p-2q-p-1-2q-2-q-Find-p-q-

Question Number 42528 by rahul 19 last updated on 27/Aug/18 Solve:p+22p+1=q+2p2q+p=1+2q2+q=λ.Find(p,q)? Answered by math1967 last updated on 27/Aug/18 $$\lambda=\frac{{p}+\mathrm{2}+{q}+\mathrm{2}{p}+\mathrm{1}+\mathrm{2}{q}}{\mathrm{2}{p}+\mathrm{1}+\mathrm{2}{q}+{p}+\mathrm{2}+{q}}=\frac{\mathrm{3}\left({p}+{q}+\mathrm{1}\right)}{\mathrm{3}\left({p}+{q}+\mathrm{1}\right)}=\mathrm{1}…