Question Number 28201 by pieroo last updated on 21/Jan/18 $$\mathrm{prove}\:\mathrm{the}\:\mathrm{sine}\:\mathrm{rule}\:\mathrm{using}\:\mathrm{dot}\:\mathrm{product} \\ $$$$\mathrm{need}\:\mathrm{help}\:\mathrm{please} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 28034 by tawa tawa last updated on 18/Jan/18 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 93299 by Rio Michael last updated on 12/May/20 $$\mathrm{find}\:\mathrm{a}\:\mathrm{reduction}\:\mathrm{formulae}\:\mathrm{for}\:{I}_{{n}} \:=\:\int_{−\mathrm{1}} ^{\mathrm{0}} {x}^{{n}} \left(\mathrm{1}\:+\:{x}\right)^{\mathrm{2}} \:{dx} \\ $$ Commented by mathmax by abdo last updated…
Question Number 93249 by 1549442205 last updated on 12/May/20 $${calculate}\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}\:} \frac{{dx}}{\mathrm{2}+{cos}\mathrm{2}{x}} \\ $$ Commented by 1549442205 last updated on 12/May/20 $${Calculate}\:{its}\:{value}? \\ $$ Commented…
Question Number 27673 by ajfour last updated on 12/Jan/18 Commented by ajfour last updated on 12/Jan/18 $${Find}\:{vector}\:{eq}.\:{of}\:{blue}\:{line}\:{in} \\ $$$${given}\:{plane}\:{that}\:{makes}\:\:{a}\:{minimum} \\ $$$${angle}\:{with}\:{the}\:{given}\:{red}\:{line}. \\ $$ Terms of…
Question Number 27651 by Joel578 last updated on 12/Jan/18 $$\mathrm{A}\:\mathrm{positive}\:\mathrm{number}\:\mathrm{has}\:\mathrm{8}\:\mathrm{distinct}\:\mathrm{divisors} \\ $$$$\mathrm{Lets}\:\mathrm{say}\:{a},\:{b},\:{c},\:{d},\:{e},\:{f},\:{g}\:\mathrm{and}\:{h} \\ $$$$\mathrm{Given}\:\:{a}\:.\:{b}\:.\:{c}\:.\:{d}\:.\:{e}\:.\:{f}\:.\:{g}\:.\:{h}\:=\:\mathrm{3111696} \\ $$$$\mathrm{Find}\:\mathrm{that}\:\mathrm{number} \\ $$ Commented by Joel578 last updated on 12/Jan/18…
Question Number 27635 by amit96 last updated on 11/Jan/18 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 27555 by amit96 last updated on 09/Jan/18 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 158081 by Eric002 last updated on 30/Oct/21 $${determine}\:{the}\:{angle}\:{between}\:{two}\:{vectors} \\ $$$${A}=\mathrm{4}{ax}+{ay}−\mathrm{3}{az}\:\:{and}\:\:{B}=\mathrm{2}{ax}+\mathrm{4}{ay}−\mathrm{3}{az} \\ $$ Answered by ajfour last updated on 30/Oct/21 $$\mathrm{cos}\:\theta=\frac{\mathrm{4}\left(\mathrm{2}\right)+\mathrm{1}\left(\mathrm{4}\right)−\mathrm{3}\left(−\mathrm{3}\right)}{\:\sqrt{\mathrm{4}^{\mathrm{2}} +\mathrm{1}^{\mathrm{2}} +\left(−\mathrm{3}\right)^{\mathrm{2}} }\sqrt{\mathrm{2}^{\mathrm{2}}…
Question Number 158066 by zainaltanjung last updated on 30/Oct/21 Terms of Service Privacy Policy Contact: info@tinkutara.com