Question Number 19857 by Nayon last updated on 16/Aug/17 $${proof}\:{that}\:\left(\underset{−} {{a}}+\underset{−} {{b}}\right).\underset{−} {{c}}=\underset{−} {{a}}.\underset{−} {{c}}+\underset{−} {{b}}.\underset{−} {{c}} \\ $$$${or}\:{the}\:{distribiuting}\:{law}\:{of}\:{dot}\:{products} \\ $$$$ \\ $$ Commented by…
Question Number 19554 by Nayon last updated on 12/Aug/17 $${proof}\:\left(\overset{−} {{a}}+\overset{−} {{b}}\right).\overset{−} {{c}}=\overset{−} {{a}}.\overset{−} {{c}}+\overset{−} {{b}}.\overset{−} {{c}} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 84849 by M±th+et£s last updated on 16/Mar/20 $${ABC}\:{is}\:{a}\:{triangle}\: \\ $$$${prove}\:{that} \\ $$$${sinA}+{sinB}+{sinC}>{sinA}\:{sinB}\:{sinC} \\ $$ Commented by ajfour last updated on 16/Mar/20 $$\mathrm{0}<\:\mathrm{sin}\:{A}\:,\:\mathrm{sin}\:{B},\:\mathrm{sin}\:{C}\:\leqslant\:\mathrm{1} \\…
Question Number 84641 by M±th+et£s last updated on 14/Mar/20 Commented by M±th+et£s last updated on 14/Mar/20 $${a}\:{square},\:{a}\:{circle}\:{and}\:{tow}\:{semicircles} \\ $$$${the}\:{are}\:{of}\:{the}\:{square}\:{is}\:\mathrm{4}.{what}\:{is}\:{the} \\ $$$${length}\:{of}\:{the}\:{blue}\:{lenght} \\ $$ Answered by…
Question Number 18909 by Nayon last updated on 01/Aug/17 $${What}\:{does}\:\underset{} {{a}}.\underset{} {{b}}\:\:{and}\:\underset{} {{a}}×\underset{} {{b}}\:{means}\:? \\ $$$${someone}\:{please}\:{explain}\:{it}. \\ $$ Commented by mrW1 last updated on 02/Aug/17…
Question Number 18907 by Nayon last updated on 01/Aug/17 $${Why}\:{Does}\: \\ $$$$\overset{\rightarrow} {{A}}.\overset{\rightarrow} {{B}}={ABCos}\theta?\: \\ $$ Commented by Nayon last updated on 01/Aug/17 $${Mr}.{w}\mathrm{1}\:{pls}\:{explain} \\…
Question Number 18908 by Nayon last updated on 01/Aug/17 $${Why}\:{Does} \\ $$$$\mid\overset{\rightarrow} {{A}}×\overset{\rightarrow} {{B}}\mid={ABSin}\theta\:? \\ $$ Commented by mrW1 last updated on 02/Aug/17 $$\mathrm{You}\:\mathrm{can}\:\mathrm{not}\:\mathrm{ask}\:\mathrm{why}\:\mathrm{to}\:\mathrm{a}\:\mathrm{definition}. \\…
Question Number 84296 by M±th+et£s last updated on 11/Mar/20 Commented by M±th+et£s last updated on 11/Mar/20 $${prove}\:{that}\:{m}\left(\angle{ADE}\right)=\mathrm{90}° \\ $$$$ \\ $$ Terms of Service Privacy…
Question Number 84275 by john santu last updated on 11/Mar/20 $$\left(\boldsymbol{\mathrm{a}}.\boldsymbol{\mathrm{c}}\right)\boldsymbol{\mathrm{b}}−\left(\boldsymbol{\mathrm{a}}.\boldsymbol{\mathrm{b}}\right)\boldsymbol{\mathrm{c}}\:=\:\boldsymbol{\mathrm{a}}×\left(\boldsymbol{\mathrm{c}}×\boldsymbol{\mathrm{b}}\right)\:? \\ $$ Commented by mr W last updated on 11/Mar/20 $$−\left(\boldsymbol{\mathrm{a}}.\boldsymbol{\mathrm{c}}\right)\boldsymbol{\mathrm{b}}+\left(\boldsymbol{\mathrm{a}}.\boldsymbol{\mathrm{b}}\right)\boldsymbol{\mathrm{c}}\:=\:\boldsymbol{\mathrm{a}}×\left(\boldsymbol{\mathrm{c}}×\boldsymbol{\mathrm{b}}\right) \\ $$$$\left(\boldsymbol{\mathrm{a}}.\boldsymbol{\mathrm{c}}\right)\boldsymbol{\mathrm{b}}−\left(\boldsymbol{\mathrm{a}}.\boldsymbol{\mathrm{b}}\right)\boldsymbol{\mathrm{c}}\:=\:\boldsymbol{\mathrm{a}}×\left(\boldsymbol{{b}}×\boldsymbol{{c}}\right) \\…
Question Number 18377 by tawa tawa last updated on 19/Jul/17 $$\mathrm{Suppose}\:\mathrm{one}\:\mathrm{is}\:\mathrm{given}\:\mathrm{two}\:\mathrm{vector}\:\mathrm{field}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{in}\:\mathrm{region}\:\mathrm{of}\:\mathrm{space}\:\mathrm{such}\:\mathrm{that}, \\ $$$$\mathrm{A}\left(\mathrm{x},\mathrm{y},\mathrm{z}\right)\:=\:\mathrm{4xi}\:+\:\mathrm{zj}\:+\:\mathrm{y}^{\mathrm{2}} \mathrm{z}^{\mathrm{2}} \mathrm{k} \\ $$$$\mathrm{B}\left(\mathrm{x},\mathrm{y},\mathrm{z}\right)\:=\:\mathrm{yi}\:+\mathrm{3j}\:−\:\mathrm{yzk} \\ $$$$\mathrm{Find}:\:\:\:\mathrm{C}\left(\mathrm{x},\mathrm{y},\mathrm{z}\right)\:\mathrm{if}\:\mathrm{C}\:=\:\mathrm{A}\:\wedge\:\mathrm{B} \\ $$$$\mathrm{Also}\:\mathrm{prove}\:\mathrm{that},\:\:\mathrm{C}\left(\mathrm{x},\mathrm{y},\mathrm{z}\right)\:\mathrm{is}\:\mathrm{perpendicular}\:\mathrm{to}\:\mathrm{A}\left(\mathrm{x},\mathrm{y},\mathrm{z}\right) \\ $$ Terms of…