Menu Close

Category: Vector

If-k-is-any-possible-number-what-is-the-size-of-angle-between-the-vectors-a-K-k-and-b-3-4-

Question Number 18284 by tawa tawa last updated on 18/Jul/17 $$\mathrm{If}\:\mathrm{k}\:\mathrm{is}\:\mathrm{any}\:\mathrm{possible}\:\mathrm{number}.\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{size}\:\mathrm{of}\:\mathrm{angle}\:\mathrm{between}\:\mathrm{the}\:\mathrm{vectors} \\ $$$$\mathrm{a}\left(\mathrm{K},\:\mathrm{k}\right)\:\mathrm{and}\:\mathrm{b}\left(−\:\mathrm{3},\:\mathrm{4}\right) \\ $$ Answered by Arnab Maiti last updated on 18/Jul/17 $$\mathrm{let}\:\overset{\rightarrow} {\mathrm{A}}=\mathrm{K}\hat…

A-B-and-C-are-three-non-collinear-non-co-planar-vectors-What-can-you-say-about-direction-of-A-B-C-

Question Number 18094 by Tinkutara last updated on 15/Jul/17 $$\overset{\rightarrow} {{A}},\:\overset{\rightarrow} {{B}}\:\mathrm{and}\:\overset{\rightarrow} {{C}}\:\mathrm{are}\:\mathrm{three}\:\mathrm{non}-\mathrm{collinear}, \\ $$$$\mathrm{non}\:\mathrm{co}-\mathrm{planar}\:\mathrm{vectors}.\:\mathrm{What}\:\mathrm{can}\:\mathrm{you} \\ $$$$\mathrm{say}\:\mathrm{about}\:\mathrm{direction}\:\mathrm{of}\:\overset{\rightarrow} {{A}}×\left(\overset{\rightarrow} {{B}}×\overset{\rightarrow} {{C}}\right)? \\ $$ Commented by ajfour…

find-the-value-of-b-wich-makes-the-line-y-b-divide-the-tow-funtions-into-tow-equal-parts-1-f-x-9-x-2-g-x-0-2-f-x-9-x-g-x-0-

Question Number 83556 by M±th+et£s last updated on 03/Mar/20 $${find}\:{the}\:{value}\:{of}\:\:\left({b}\right)\:{wich}\:{makes}\:{the} \\ $$$${line}\:{y}={b}\:{divide}\:{the}\:{tow}\:{funtions}\:{into} \\ $$$${tow}\:{equal}\:{parts} \\ $$$$ \\ $$$$\left.\mathrm{1}\right)\:{f}\left({x}\right)=\mathrm{9}−{x}^{\mathrm{2}} \:,\:{g}\left({x}\right)=\mathrm{0} \\ $$$$ \\ $$$$\left.\mathrm{2}\right){f}\left({x}\right)=\mathrm{9}−\mid{x}\mid\:,\:{g}\left({x}\right)=\mathrm{0} \\ $$…

Question-17959

Question Number 17959 by tawa tawa last updated on 13/Jul/17 Answered by alex041103 last updated on 13/Jul/17 $${Because}\:{j}=\sqrt{−\mathrm{1}}={i}\:{we}\:{can}\:{use} \\ $$$${Euler}'{s}\:{formula} \\ $$$${e}^{{ix}} ={cos}\:{x}\:+\:{isin}\:{x} \\ $$$${z}={e}^{\mathrm{1}+{i}\frac{\pi}{\mathrm{2}}}…

Let-A-2-1-B-1-3-C-10-5-three-given-points-in-the-brand-O-I-J-such-as-OI-OJ-and-OI-OJ-D-is-a-point-such-as-AD-AC-2-and-CD-2-Prove-correctly-that-BD-13-

Question Number 83293 by ~blr237~ last updated on 29/Feb/20 $${Let}\:\:{A}\begin{pmatrix}{−\mathrm{2}}\\{−\mathrm{1}}\end{pmatrix}\:\:,{B}\begin{pmatrix}{\mathrm{1}}\\{\mathrm{3}}\end{pmatrix}\:,\:{C}\begin{pmatrix}{−\mathrm{10}}\\{\:\mathrm{5}}\end{pmatrix}\:{three}\:{given}\:{points}\:{in}\:{the}\:{brand}\:\left({O},{I},{J}\right)\:{such}\:{as}\:{OI}={OJ}\:{and}\:\left({OI}\right)\bot\left({OJ}\right) \\ $$$$\:{D}\:{is}\:{a}\:{point}\:{such}\:{as}\:{AD}={AC}+\mathrm{2}\:\:{and}\:\:{CD}=\mathrm{2}\: \\ $$$${Prove}\:{correctly}\:{that}\:\:{BD}=\mathrm{13}\:.{Can}\:{you}\:{find}\:{the}\:{coordinate}\:{of}\:{D}? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Find-the-modulus-of-z-6-8i-

Question Number 17393 by tawa tawa last updated on 05/Jul/17 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{modulus}\:\mathrm{of}\:\:\mathrm{z}\:=\:\mathrm{6}\:+\:\mathrm{8i} \\ $$ Answered by ajfour last updated on 05/Jul/17 $$\mid\mathrm{z}\mid=\sqrt{\left(\mathrm{6}\right)^{\mathrm{2}} +\left(\mathrm{8}\right)^{\mathrm{2}} }\:=\mathrm{10}\:. \\ $$…

write-z-2-2-3-i-3-in-polar-form-

Question Number 17391 by tawa tawa last updated on 05/Jul/17 $$\mathrm{write}\:\:\:\mathrm{z}\:=\:\left(\mathrm{2}\:+\:\mathrm{2}\sqrt{\mathrm{3}}\:\mathrm{i}\right)^{\mathrm{3}} \:\:\mathrm{in}\:\mathrm{polar}\:\mathrm{form}. \\ $$ Answered by ajfour last updated on 05/Jul/17 $$\mathrm{z}=\mathrm{4}^{\mathrm{3}} \left(\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{3}} =\mathrm{64}\left(\mathrm{e}^{\boldsymbol{\mathrm{i}}\pi/\mathrm{3}} \right)^{\mathrm{3}}…

Find-the-length-of-a-1-cos-x-2-y-2-tan-1-y-x-

Question Number 17302 by ajfour last updated on 03/Jul/17 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{length}\:\mathrm{of}\: \\ $$$$\:\:\rho=\mathrm{a}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)\:. \\ $$$$\:\rho=\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }\:\:,\:\:\theta=\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{y}}{\mathrm{x}}\right)\:. \\ $$ Commented by ajfour last updated on…