Menu Close

Category: Vector

Question-147162

Question Number 147162 by nadovic last updated on 18/Jul/21 Answered by liberty last updated on 18/Jul/21 $$\left(\mathrm{1}\right)\overset{\rightarrow} {{p}}=\frac{\mathrm{2}}{\mathrm{5}}\overset{\rightarrow} {{a}}+\frac{\mathrm{1}}{\mathrm{5}}\overset{\rightarrow} {{b}}+\frac{\mathrm{2}}{\mathrm{5}}\overset{\rightarrow} {{c}} \\ $$$$\left(\mathrm{2}\right)\overset{\rightarrow} {{p}}.\overset{\rightarrow} {{b}}=\overset{\rightarrow}…

Let-A-B-and-C-be-the-midpoints-of-the-sides-BC-CA-and-AB-of-the-triangle-ABC-Prove-that-AA-1-2-AB-AC-

Question Number 16055 by Tinkutara last updated on 17/Jun/17 $$\mathrm{Let}\:{A}',\:{B}'\:\mathrm{and}\:{C}'\:\mathrm{be}\:\mathrm{the}\:\mathrm{midpoints}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{sides}\:{BC},\:{CA}\:\mathrm{and}\:{AB}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{triangle}\:{ABC}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\overset{\rightarrow} {{AA}'}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\overset{\rightarrow} {{AB}}\:+\:\overset{\rightarrow} {{AC}}\right) \\ $$ Answered by mrW1 last…

A-vector-A-of-magnitude-A-is-turned-through-an-angle-Calculate-the-change-in-the-magnitude-of-vector-

Question Number 15448 by Tinkutara last updated on 10/Jun/17 $$\mathrm{A}\:\mathrm{vector}\:\overset{\rightarrow} {{A}}\:\mathrm{of}\:\mathrm{magnitude}\:{A}\:\mathrm{is}\:\mathrm{turned} \\ $$$$\mathrm{through}\:\mathrm{an}\:\mathrm{angle}\:\theta.\:\mathrm{Calculate}\:\mathrm{the} \\ $$$$\mathrm{change}\:\mathrm{in}\:\mathrm{the}\:\mathrm{magnitude}\:\mathrm{of}\:\mathrm{vector}. \\ $$ Commented by prakash jain last updated on 10/Jun/17…