Menu Close

Category: Vector

Question-14660

Question Number 14660 by 1kanika# last updated on 03/Jun/17 Commented by prakash jain last updated on 04/Jun/17 $$\mathrm{Can}\:\mathrm{u}\:\mathrm{use}\:\mathrm{camscanner}\:\mathrm{to}\:\mathrm{post} \\ $$$$\mathrm{pictures}\:\mathrm{of}\:\mathrm{printed}\:\mathrm{material}. \\ $$ Commented by 1kanika#…

Question-80119

Question Number 80119 by M±th+et£s last updated on 31/Jan/20 Answered by key of knowledge last updated on 31/Jan/20 $$\hat {\mathrm{C}}=\mathrm{108}\Rightarrow\mathrm{CD}=\mathrm{CB}\Rightarrow\mathrm{C}\hat {\mathrm{B}D}=\mathrm{36} \\ $$$$\mathrm{D}\hat {\mathrm{B}F}=\mathrm{F}\hat {\mathrm{B}A}=\frac{\mathrm{108}−\mathrm{36}}{\mathrm{2}}=\mathrm{36}…

Determine-the-roots-of-the-equation-x-3-64-0-in-the-polar-form-a-jb-Where-a-and-b-are-real-

Question Number 14587 by tawa tawa last updated on 02/Jun/17 $$\mathrm{Determine}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation}\:\:\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{64}\:=\:\mathrm{0}\:\:\mathrm{in}\:\mathrm{the}\:\mathrm{polar}\:\mathrm{form}\:\:\mathrm{a}\:+\:\mathrm{jb}, \\ $$$$\mathrm{Where}\:\:\mathrm{a}\:\:\mathrm{and}\:\:\mathrm{b}\:\:\mathrm{are}\:\mathrm{real}. \\ $$ Answered by mrW1 last updated on 03/Jun/17 $${x}={r}\left(\mathrm{cos}\:\theta+{i}\:\mathrm{sin}\:\theta\right) \\…

simplify-4-j5-1-j2-

Question Number 14011 by Ruth1 last updated on 26/May/17 $$\mathrm{simplify}:\:\:\frac{\mathrm{4}\:−\:\mathrm{j5}}{\mathrm{1}\:+\:\mathrm{j2}} \\ $$ Commented by tawa tawa last updated on 26/May/17 $$\mathrm{Multiply}\:\mathrm{by}\:\mathrm{the}\:\mathrm{conjugate}\:\mathrm{both}\:\mathrm{numerator}\:\mathrm{and}\:\mathrm{denominator} \\ $$$$\frac{\left(\mathrm{4}\:−\:\mathrm{j5}\right)}{\left(\mathrm{1}\:+\:\mathrm{j2}\right)}\:×\:\frac{\left(\mathrm{1}\:−\:\mathrm{j2}\right)}{\left(\mathrm{1}\:−\:\mathrm{j2}\right)} \\ $$$$=\:\frac{\mathrm{4}\:−\:\mathrm{j8}\:−\:\mathrm{j5}\:+\:\mathrm{10j}^{\mathrm{2}}…

for-v-y-x-v-R-2-v-has-basis-vectors-i-and-j-Assume-we-apply-a-basis-transform-to-obtain-new-basis-vectors-i-and-j-What-is-the-new-v-

Question Number 13942 by FilupS last updated on 25/May/17 $$\mathrm{for}\:\:\boldsymbol{{v}}=\begin{bmatrix}{{y}}\\{{x}}\end{bmatrix},\:\:\:\:\boldsymbol{{v}}\in\mathbb{R}^{\mathrm{2}} \\ $$$$\boldsymbol{{v}}\:\mathrm{has}\:\mathrm{basis}\:\mathrm{vectors}\:\hat {{i}}\:\mathrm{and}\:\hat {{j}} \\ $$$$\: \\ $$$$\mathrm{Assume}\:\mathrm{we}\:\mathrm{apply}\:\mathrm{a}\:\mathrm{basis}\:\mathrm{transform}\:\mathrm{to} \\ $$$$\mathrm{obtain}\:\mathrm{new}\:\mathrm{basis}\:\mathrm{vectors}\:\hat {{i}}'\:\mathrm{and}\:\hat {{j}}' \\ $$$$\: \\…

Determine-the-set-of-points-M-such-as-MA-MB-2MC-6-3-AB-BC-AC-6-ABC-is-triangle-

Question Number 79131 by mathocean1 last updated on 23/Jan/20 $$\mathrm{Determine}\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{points}\:\mathrm{M}\: \\ $$$$\mathrm{such}\:\mathrm{as}\:\mid\mid\mathrm{M}\overset{\rightarrow} {\mathrm{A}}+\mathrm{M}\overset{\rightarrow} {\mathrm{B}}+\mathrm{2M}\overset{\rightarrow} {\mathrm{C}}\mid\mid=\mathrm{6}\sqrt{\mathrm{3}} \\ $$$$\mathrm{AB}=\mathrm{BC}=\mathrm{AC}=\mathrm{6} \\ $$$$\mathrm{ABC}\:\mathrm{is}\:\mathrm{triangle}. \\ $$ Commented by mathocean1 last…