Menu Close

Category: Vector

v-x-f-x-f-x-mx-b-If-I-wish-to-rotate-v-counter-clockwise-by-degrees-how-does-one-do-so-where-v-is-rotated-about-the-origin-v-is-rotated-about-the-point-x-1-f-x-1-What-a

Question Number 7372 by FilupSmith last updated on 25/Aug/16 $$\boldsymbol{{v}}=\begin{bmatrix}{{x}}\\{{f}\left({x}\right)}\end{bmatrix},\:\:{f}\left({x}\right)={mx}+{b} \\ $$$$\mathrm{If}\:\mathrm{I}\:\mathrm{wish}\:\mathrm{to}\:\mathrm{rotate}\:\boldsymbol{{v}}\:\mathrm{counter}\:\mathrm{clockwise} \\ $$$$\mathrm{by}\:\theta\:\mathrm{degrees},\:\mathrm{how}\:\mathrm{does}\:\mathrm{one}\:\mathrm{do}\:\mathrm{so}\:\mathrm{where}: \\ $$$$\bullet\:\:\:\boldsymbol{{v}}\:\mathrm{is}\:\mathrm{rotated}\:\mathrm{about}\:\mathrm{the}\:\mathrm{origin} \\ $$$$\bullet\:\:\:\boldsymbol{{v}}\:\mathrm{is}\:\mathrm{rotated}\:\mathrm{about}\:\mathrm{the}\:\mathrm{point}\:\left({x}_{\mathrm{1}} ,\:{f}\left({x}_{\mathrm{1}} \right)\right) \\ $$$$\mathrm{What}\:\mathrm{are}\:\mathrm{the}\:\mathrm{new}\:\mathrm{vectors}? \\ $$ Answered…

In-a-parallelogram-OABC-OA-a-OC-c-D-is-a-point-such-that-AD-DB-1-2-Express-the-following-in-terms-of-a-and-c-i-CB-ii-BC-iii-AB-iv-AD-v-OD-vi-DC-

Question Number 72832 by necxxx last updated on 03/Nov/19 $${In}\:{a}\:{parallelogram}\:{OABC},\:{O}\overset{\rightharpoondown} {{A}}=\overset{−\rightharpoondown} {{a}}, \\ $$$${O}\overset{\rightarrow} {{C}}=\overset{\rightarrow} {{c}},\:{D}\:{is}\:{a}\:{point}\:{such}\:{that}\:{A}\overset{\rightarrow} {{D}}:{D}\overset{\rightarrow} {{B}}=\mathrm{1}:\mathrm{2} \\ $$$${Express}\:{the}\:{following}\:{in}\:{terms}\:{of}\:{a}\:{and}\:{c} \\ $$$$\left({i}\right){C}\overset{\rightarrow} {{B}}\:\left({ii}\right){B}\overset{\rightarrow} {{C}}\:\left({iii}\right){A}\overset{\rightarrow} {{B}}\:\left({iv}\right)\:{A}\overset{\rightarrow}…

If-x-2-x-2-2-2-2-x-16-x-16-Any-help-

Question Number 138366 by KwesiDerek last updated on 12/Apr/21 $$\boldsymbol{\mathrm{If}}\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{x}}^{−\mathrm{2}} =\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}} \\ $$$$\boldsymbol{\mathrm{x}}^{\mathrm{16}} +\boldsymbol{\mathrm{x}}^{−\mathrm{16}} =? \\ $$$$\boldsymbol{\mathrm{Any}}\:\boldsymbol{\mathrm{help}} \\ $$ Answered by TheSupreme last updated…

Question-72773

Question Number 72773 by ajfour last updated on 02/Nov/19 Commented by ajfour last updated on 02/Nov/19 $${If}\:{parabola}\:{in}\:{xz}\:{plane}\:{has}\:{eq}. \\ $$$${z}={ax}^{\mathrm{2}} \:\:\:{find}\:{eq}.\:{of}\:{shadow}\:{of} \\ $$$${this}\:{parabola}\:{on}\:{ground}\:\left({xy}\:{plane}\right). \\ $$ Commented…

If-we-have-a-vector-v-x-y-and-apply-a-linear-tranformation-such-that-a-new-vector-v-x-y-is-made-can-we-calculate-the-change-of-area-with-respect-to-the-unit-vector-

Question Number 7093 by FilupSmith last updated on 10/Aug/16 $$\mathrm{If}\:\mathrm{we}\:\mathrm{have}\:\mathrm{a}\:\mathrm{vector}\:\boldsymbol{{v}}=\begin{bmatrix}{{x}}\\{{y}}\end{bmatrix} \\ $$$$\mathrm{and}\:\mathrm{apply}\:\mathrm{a}\:\mathrm{linear}\:\mathrm{tranformation}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{a}\:\mathrm{new}\:\mathrm{vector}\:\boldsymbol{{v}}^{'} =\begin{bmatrix}{{x}'}\\{{y}'}\end{bmatrix}\:\mathrm{is}\:\mathrm{made}, \\ $$$$\mathrm{can}\:\mathrm{we}\:\mathrm{calculate}\:\mathrm{the}\:\mathrm{change}\:\mathrm{of}\:\mathrm{area}\:\mathrm{with} \\ $$$$\mathrm{respect}\:\mathrm{to}\:\mathrm{the}\:\hat {\imath}\:\mathrm{unit}\:\mathrm{vector}? \\ $$ Commented by FilupSmith…

v-x-c-c-constant-What-is-the-area-under-v-excluding-A-1-2-xc-area-of-triangle-

Question Number 6999 by FilupSmith last updated on 05/Aug/16 $$\boldsymbol{{v}}=\begin{bmatrix}{{x}}\\{{c}}\end{bmatrix},\:{c}=\mathrm{constant} \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{area}\:\mathrm{under}\:\boldsymbol{{v}}? \\ $$$$ \\ $$$${excluding}:\:\:\:\:{A}=\frac{\mathrm{1}}{\mathrm{2}}{xc}\:\:\:\left({area}\:{of}\:{triangle}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

If-a-vector-v-exists-in-n-dimensions-v-R-n-Can-there-exist-a-complex-dimension-s-

Question Number 6932 by FilupSmith last updated on 03/Aug/16 $$\mathrm{If}\:\mathrm{a}\:\mathrm{vector}\:\boldsymbol{{v}}\:\mathrm{exists}\:\mathrm{in}\:{n}\:\mathrm{dimensions}: \\ $$$$\boldsymbol{{v}}\in\mathbb{R}^{{n}} \\ $$$$\mathrm{Can}\:\mathrm{there}\:\mathrm{exist}\:\mathrm{a}\:\mathrm{complex}\:\mathrm{dimension}\left(\mathrm{s}\right)? \\ $$ Commented by nburiburu last updated on 04/Aug/16 $${you}\:{mean}\:{if}\:{v}\in\mathbb{R}^{{n}} \:\Rightarrow{v}\in\mathbb{C}^{{n}}…

v-lt-x-v-y-v-gt-u-lt-x-u-y-u-gt-v-and-u-have-angles-v-tan-y-v-x-v-and-u-tan-y-u-x-u-respectively-if-t-lt-x-t-y-t-gt-and-has-angle-t-v-u-2-what-are-x-t-and

Question Number 6935 by FilupSmith last updated on 05/Aug/16 $$\boldsymbol{{v}}=<{x}_{{v}} ,\:{y}_{{v}} > \\ $$$$\boldsymbol{{u}}=<{x}_{{u}} ,\:{y}_{{u}} > \\ $$$$\boldsymbol{{v}}\:\mathrm{and}\:\boldsymbol{{u}}\:\mathrm{have}\:\mathrm{angles}: \\ $$$$\theta_{{v}} =\mathrm{tan}\left(\frac{{y}_{{v}} }{{x}_{{v}} }\right)\:\mathrm{and}\:\theta_{{u}} =\mathrm{tan}\left(\frac{{y}_{{u}} }{{x}_{{u}}…

Find-the-principal-value-of-3-4i-1-3-

Question Number 6923 by Tawakalitu. last updated on 03/Aug/16 $${Find}\:{the}\:{principal}\:{value}\:{of}\:\left(\mathrm{3}\:+\:\mathrm{4}{i}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$ Commented by Yozzii last updated on 03/Aug/16 $$\mathrm{3}+\mathrm{4}{i}=\sqrt{\mathrm{3}^{\mathrm{2}} +\mathrm{4}^{\mathrm{2}} }{e}^{{itan}^{−\mathrm{1}} \left(\mathrm{4}/\mathrm{3}\right)} =\mathrm{5}{e}^{{itan}^{−\mathrm{1}} \frac{\mathrm{4}}{\mathrm{3}}}…