Menu Close

Category: Vector

three-forces-having-equal-magnitude-s-of-10N-20N-and-30N-make-angles-of-30-120-and-210-respectively-with-the-positive-direction-of-the-x-axis-By-scale-drawing-find-the-magnitude-and-the-direction

Question Number 62587 by Jmasanja last updated on 23/Jun/19 $${three}\:{forces}\:{having}\:{equal}\:{magnitude} \\ $$$${s}\:{of}\:\mathrm{10}{N},\mathrm{20}{N}\:{and}\:\mathrm{30}{N}\:{make}\:{angles}\: \\ $$$${of}\:\mathrm{30}°,\mathrm{120}°\:{and}\:\mathrm{210}°\:{respectively}\:{with} \\ $$$${the}\:{positive}\:{direction}\:{of}\:{the}\:{x}\:{axis}. \\ $$$${By}\:{scale}\:{drawing}\:{find}\:{the}\:{magnitude} \\ $$$${and}\:{the}\:{direction}\:{of}\:{the}\:{resultant}\: \\ $$$${force} \\ $$ Commented…

find-the-vector-sum-of-two-vectors-of-magnitude-of-7-and-8-making-an-angle-of-120-to-each-other-

Question Number 62583 by Jmasanja last updated on 23/Jun/19 $${find}\:{the}\:{vector}\:{sum}\:{of}\:{two}\:{vectors} \\ $$$${of}\:{magnitude}\:{of}\:\mathrm{7}\:{and}\:\mathrm{8}\:{making}\:{an} \\ $$$${angle}\:{of}\:\mathrm{120}°\:{to}\:{each}\:{other} \\ $$ Answered by MJS last updated on 23/Jun/19 $$\begin{pmatrix}{\mathrm{7}}\\{\mathrm{0}}\end{pmatrix}+\begin{pmatrix}{\mathrm{8}}\\{\mathrm{8sin}\:\mathrm{120}°}\end{pmatrix}=\begin{pmatrix}{\mathrm{15}}\\{\mathrm{4}\sqrt{\mathrm{3}}}\end{pmatrix} \\…

find-the-resultant-force-of-a-system-of-three-forces-O-P-9N-O-R-10N-and-O-Q-10N-acting-at-point-O-where-angle-POR-is-135-angle-POQ-is-135-and-QOR-is-90-

Question Number 62585 by Jmasanja last updated on 23/Jun/19 $${find}\:{the}\:{resultant}\:{force}\:{of}\:{a}\:{system} \\ $$$${of}\:{three}\:{forces}\:\overset{−} {{O}}\overset{\rightarrow} {{P}}\:=\mathrm{9}{N},\overset{−} {{O}}\overset{\rightarrow} {{R}}\:=\mathrm{10}{N}\:{and}\:\overset{−} {{O}}\overset{\rightarrow} {{Q}}\:\mathrm{10}{N}\: \\ $$$${acting}\:{at}\:{point}\:{O}\:{where}\:{angle}\:{POR}\:{is} \\ $$$$\mathrm{135}°,{angle}\:{POQ}\:{is}\:\mathrm{135}°\:\:{and}\:{QOR}\:{is}\: \\ $$$$\mathrm{90}° \\…

Question-127566

Question Number 127566 by Ar Brandon last updated on 30/Dec/20 Answered by bramlexs22 last updated on 30/Dec/20 $$\left(\overset{\rightarrow} {\mathrm{a}}+\overset{\rightarrow} {\mathrm{b}}\right)×\left(\overset{\rightarrow} {\mathrm{a}}−\overset{\rightarrow} {\mathrm{b}}\right)=\overset{\rightarrow} {\mathrm{a}}×\overset{\rightarrow} {\mathrm{a}}−\overset{\rightarrow} {\mathrm{a}}×\overset{\rightarrow}…

Question-127568

Question Number 127568 by Ar Brandon last updated on 30/Dec/20 Commented by bramlexs22 last updated on 30/Dec/20 $$\mathrm{R}_{\mathrm{max}} \:=\:\sqrt{\mid\overset{\rightarrow} {\mathrm{a}}\mid^{\mathrm{2}} +\mid\overset{\rightarrow} {\mathrm{b}}\mid^{\mathrm{2}} +\mathrm{2}\mid\overset{\rightarrow} {\mathrm{a}}\mid\mid\overset{\rightarrow} {\mathrm{b}}\mid}\:…

If-D-E-and-F-are-midpoints-of-the-sides-BC-CA-and-AB-respectively-of-the-ABC-and-O-be-any-point-Prove-that-OA-OB-OC-OD-OE-OF-

Question Number 61823 by necx1 last updated on 09/Jun/19 $${If}\:{D},{E}\:{and}\:{F}\:{are}\:{midpoints}\:{of}\:{the}\:{sides} \\ $$$${BC},{CA}\:{and}\:{AB}\:{respectively}\:{of}\:{the}\:\bigtriangleup{ABC} \\ $$$${and}\:{O}\:{be}\:{any}\:{point}.{Prove}\:{that} \\ $$$${O}\overset{\rightarrow} {{A}}\:+\:{O}\overset{\rightarrow} {{B}}\:+{O}\overset{\rightarrow} {{C}}={O}\overset{\rightarrow} {{D}}+{O}\overset{\rightarrow} {{E}}+{O}\overset{\rightarrow} {{F}} \\ $$ Answered…

Question-126786

Question Number 126786 by Ar Brandon last updated on 24/Dec/20 Answered by Olaf last updated on 26/Dec/20 $$\mathrm{C}_{\mathrm{1}} \:=\:\begin{pmatrix}{\mathrm{0}}\\{\mathrm{0}}\end{pmatrix}\:\left(\mathrm{first}\:\mathrm{city}\right) \\ $$$$\mathrm{C}_{\mathrm{2}} \:=\:\begin{pmatrix}{\mathrm{60}\sqrt{\mathrm{2}}−\mathrm{20}}\\{\mathrm{75}+\mathrm{60}\sqrt{\mathrm{2}}}\end{pmatrix}\:\left(\mathrm{second}\:\mathrm{city}\right) \\ $$$$\left(\mathrm{C}_{\mathrm{1}} \mathrm{C}_{\mathrm{2}}…

Question-126778

Question Number 126778 by Ar Brandon last updated on 24/Dec/20 Answered by Dwaipayan Shikari last updated on 24/Dec/20 $$\sqrt{\left(\overset{\rightarrow} {{A}}_{\mathrm{1}} \right)^{\mathrm{2}} +\left(\overset{\rightarrow} {{A}}_{\mathrm{2}} \right)^{\mathrm{2}} +\mathrm{2}\mid\overset{\rightarrow}…