Menu Close

Category: Vector

Question-126414

Question Number 126414 by sdfg last updated on 20/Dec/20 Answered by physicstutes last updated on 20/Dec/20 $$\:\mathrm{Q}_{\mathrm{2}} .\:\mathrm{normally}\:\mathrm{we}\:\mathrm{should}\:\mathrm{be}\:\mathrm{computing}\:\mid\boldsymbol{\mathrm{A}}\:×\:\boldsymbol{\mathrm{B}}\mid\: \\ $$$$\:\mathrm{the}\:\mathrm{unit}\:\mathrm{vector}\:\boldsymbol{\mathrm{n}}\:\mathrm{could}\:\mathrm{be}\:\mathrm{any}\:\mathrm{unit}\:\mathrm{vector}\:\mathrm{they}\:\mathrm{are}\:\mathrm{millions}\:\mathrm{of}\:\mathrm{them}\:\mathrm{so} \\ $$$$\mathrm{i}\:\mathrm{guess}\:\mathrm{we}\:\mathrm{can}\:\mathrm{not}\:\mathrm{get}\:\mathrm{a}\:\mathrm{specific}\:\boldsymbol{\mathrm{A}}×\:\boldsymbol{\mathrm{B}}\:\mathrm{vector}\:\mathrm{but}\:\mathrm{we}\:\mathrm{can}\:\mathrm{get}\:\mid\boldsymbol{\mathrm{A}}×\boldsymbol{\mathrm{B}}\mid\:\mathrm{thus}: \\ $$$$\:\mid\boldsymbol{\mathrm{A}}×\boldsymbol{\mathrm{B}}\mid\:=\:\mid\boldsymbol{\mathrm{A}}\mid\mid\boldsymbol{\mathrm{B}}\mid\:\mathrm{sin}\:\theta\:\mid\:\overset{\wedge} {\boldsymbol{\mathrm{n}}}\mid…

r-t-4sin-2-ti-4cos-2-tj-3k-

Question Number 126398 by sahnaz last updated on 20/Dec/20 $$\overset{\rightarrow} {\mathrm{r}}\left(\mathrm{t}\right)=\mathrm{4sin}^{\mathrm{2}} \mathrm{t}\overset{\rightarrow} {\mathrm{i}}+\mathrm{4cos}^{\mathrm{2}} \mathrm{t}\overset{\rightarrow} {\mathrm{j}}−\mathrm{3}\overset{\rightarrow} {\mathrm{k}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

two-faire-dices-are-tossed-together-find-the-probability-that-the-total-score-is-atmost-4-

Question Number 60576 by hovea cw last updated on 22/May/19 $$\mathrm{two}\:\mathrm{faire}\:\mathrm{dices}\:\mathrm{are}\:\mathrm{tossed}\:\mathrm{together} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{the}\: \\ $$$$\mathrm{total}\:\mathrm{score}\:\mathrm{is}\:\mathrm{atmost}\:\mathrm{4} \\ $$$$ \\ $$ Commented by hovea cw last updated…

I-0-4-tanh-1-2x-dx-

Question Number 125662 by physicstutes last updated on 12/Dec/20 $$\:\mathcal{I}\:=\:\underset{\mathrm{0}} {\overset{\mathrm{4}} {\int}}\:\mathrm{tanh}^{−\mathrm{1}} \:\mathrm{2}{x}\:{dx}\:=\:??? \\ $$ Answered by mathmax by abdo last updated on 12/Dec/20 $$\mathrm{th}\left(\mathrm{x}\right)=\mathrm{y}\:\Rightarrow\mathrm{y}=\frac{\mathrm{sh}\left(\mathrm{x}\right)}{\mathrm{ch}\left(\mathrm{x}\right)}=\frac{\mathrm{e}^{\mathrm{x}}…

Calcule-I-o-3-x-2-sinx-2-dx-

Question Number 190702 by AROUNAMoussa last updated on 12/Apr/23 $$\boldsymbol{\mathrm{Calcule}}:\:\:\boldsymbol{\mathrm{I}}=\int_{\boldsymbol{\mathrm{o}}} ^{\frac{\boldsymbol{\pi}}{\mathrm{3}}} \boldsymbol{\mathrm{x}}^{\mathrm{2}} \left(\boldsymbol{\mathrm{sinx}}\right)^{\mathrm{2}} \boldsymbol{\mathrm{dx}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

determinant-If-0-pi-2-4cos-2-4x-3-1-sin-2-2x-dx-a-2-b-Find-the-value-of-a-b-

Question Number 190186 by mnjuly1970 last updated on 29/Mar/23 $$ \\ $$$$\:\:\:\:\begin{array}{|c|}{\:\:\:\:\:\:\:\:\:\mathrm{If}\:\:,\:\Omega=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \:\frac{\:\mathrm{4cos}^{\:\mathrm{2}} \:\left(\mathrm{4}{x}\right)}{\mathrm{3}\left(\mathrm{1}+\mathrm{sin}^{\:\mathrm{2}} \left(\mathrm{2}{x}\:\right)\right)}\mathrm{d}{x}=\:{a}\sqrt{\mathrm{2}}\:\:+\:{b}\:\:\:\:\:\:\:\:\:\:}\\\hline\end{array}\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$$$\:\:\:\:\:\:\Rightarrow\:\:\mathrm{Find}\:\:\mathrm{the}\:\:\mathrm{value}\:\mathrm{of}\:\:\:,\:\:{a}−\:{b}=? \\ $$$$ \\ $$ Commented…

Question-124131

Question Number 124131 by bramlexs22 last updated on 01/Dec/20 Answered by som(math1967) last updated on 01/Dec/20 $$\mathrm{Equation}\:\mathrm{of}\:\mathrm{plane} \\ $$$$\begin{vmatrix}{\mathrm{x}−\mathrm{1}}&{\mathrm{y}−\mathrm{1}}&{\mathrm{z}−\mathrm{1}}\\{\mathrm{1}−\mathrm{1}}&{−\mathrm{1}−\mathrm{1}}&{\mathrm{1}−\mathrm{1}}\\{−\mathrm{7}−\mathrm{1}}&{\mathrm{3}−\mathrm{1}}&{−\mathrm{5}−\mathrm{1}}\end{vmatrix}=\mathrm{0} \\ $$$$\begin{vmatrix}{\mathrm{x}−\mathrm{1}}&{\mathrm{y}−\mathrm{1}}&{\mathrm{z}−\mathrm{1}}\\{\mathrm{0}}&{−\mathrm{2}}&{\mathrm{0}}\\{−\mathrm{8}}&{\mathrm{2}}&{−\mathrm{6}}\end{vmatrix}=\mathrm{0} \\ $$$$\mathrm{12}\left(\mathrm{x}−\mathrm{1}\right)−\left(\mathrm{y}−\mathrm{1}\right)×\mathrm{0}+\left(\mathrm{z}−\mathrm{1}\right)×\left(−\mathrm{16}\right)=\mathrm{0} \\ $$$$\mathrm{12x}−\mathrm{16z}+\mathrm{4}=\mathrm{0}…