Menu Close

Category: Vector Calculus

Question-144783

Question Number 144783 by nonh1 last updated on 29/Jun/21 Commented by gsk2684 last updated on 29/Jun/21 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{x}^{\mathrm{2}} \mathrm{x}^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} \mathrm{x}+\left(\mathrm{x}−\mathrm{x}\right)^{\mathrm{2}} } \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{x}^{\mathrm{4}}…

find-the-constant-a-b-and-c-so-that-the-direction-derivative-of-axy-2-byz-cz-2-x-3-at-1-2-1-has-a-maximum-of-magnitude-64-jn-a-direction-parallel-to-the-z-axis-

Question Number 65797 by Souvik Ghosh last updated on 04/Aug/19 $${find}\:{the}\:{constant}\:\:{a},{b}\:{and}\:\:{c}\:\:{so} \\ $$$${that}\:{the}\:{direction}\:{derivative}\:{of} \\ $$$$\Phi={axy}^{\mathrm{2}} +{byz}+{cz}^{\mathrm{2}} {x}^{\mathrm{3}} \:{at}\:\left(\mathrm{1},\mathrm{2},−\mathrm{1}\right) \\ $$$${has}\:{a}\:{maximum}\:{of}\:{magnitude} \\ $$$$\mathrm{64}\:{jn}\:{a}\:{direction}\:{parallel}\:{to}\:{the} \\ $$$${z}\:{axis}. \\…

If-f-x-2-zi-2y-3-z-2-j-xy-2-zk-Find-div-f-curl-f-at-1-1-1-

Question Number 27 by user1 last updated on 25/Jan/15 $$\mathrm{If}\:\boldsymbol{\mathrm{f}}={x}^{\mathrm{2}} {z}\boldsymbol{\mathrm{i}}−\mathrm{2}{y}^{\mathrm{3}} {z}^{\mathrm{2}} \boldsymbol{\mathrm{j}}+{xy}^{\mathrm{2}} {z}\boldsymbol{\mathrm{k}}.\:\mathrm{Find}\:{div}\:\boldsymbol{\mathrm{f}},\:{curl}\:\boldsymbol{\mathrm{f}},\: \\ $$$${at}\left(\mathrm{1},\:−\mathrm{1},\:\mathrm{1}\right). \\ $$ Answered by user1 last updated on 03/Nov/14…

If-F-y-f-z-z-f-y-i-z-f-x-x-f-z-j-x-f-y-y-f-x-k-prove-that-F-r-f-

Question Number 4 by user1 last updated on 25/Jan/15 $$\mathrm{If} \\ $$$$\mathrm{F}\left({y}\frac{\partial{f}}{\partial{z}}−{z}\frac{\partial{f}}{\partial{y}}\right)\boldsymbol{\mathrm{i}}+\left({z}\frac{\partial{f}}{\partial{x}}−{x}\frac{\partial{f}}{\partial{z}}\right)\boldsymbol{\mathrm{j}}+\left({x}\frac{\partial{f}}{\partial{y}}−{y}\frac{\partial{f}}{\partial{x}}\right)\boldsymbol{\mathrm{k}} \\ $$$$\mathrm{prove}\:\mathrm{that}\:\:\:\boldsymbol{\mathrm{F}}=\boldsymbol{\mathrm{r}}×\bigtriangledown{f}. \\ $$ Answered by user1 last updated on 29/Oct/14 $$\:\:\boldsymbol{\mathrm{r}}×\bigtriangledown\boldsymbol{\mathrm{f}}=\begin{vmatrix}{\boldsymbol{\mathrm{i}}}&{\boldsymbol{\mathrm{j}}}&{\boldsymbol{\mathrm{k}}}\\{{x}}&{{y}}&{{z}}\\{\frac{\partial{f}}{\partial{x}}}&{\frac{\partial{f}}{\partial{y}}}&{\frac{\partial{f}}{\partial{z}}}\end{vmatrix} \\…

Find-grad-log-r-

Question Number 2 by user1 last updated on 25/Jan/15 $$\mathrm{Find}\:\mathrm{grad}\:{log}\:\mid\boldsymbol{\mathrm{r}}\mid. \\ $$ Answered by user1 last updated on 29/Oct/14 $$\mathrm{We}\:\mathrm{have}\:\:\:{r}=\sqrt{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)} \\ $$$$\mathrm{log}\:\mid\boldsymbol{\mathrm{r}}\mid=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{log}\left({x}^{\mathrm{2}}…

given-vektor-a-3-x-2-b-6-2-y-what-the-value-x-and-y-if-a-and-b-are-parallel-

Question Number 76302 by john santuy last updated on 26/Dec/19 $${given}\:{vektor}\:{a}=\left(\mathrm{3},{x},−\mathrm{2}\right) \\ $$$${b}=\left(−\mathrm{6},−\mathrm{2},{y}\right)\:.\:{what}\:{the}\:{value}\:{x}\: \\ $$$${and}\:{y}\:{if}\:{a}\:{and}\:{b}\:{are}\:{parallel}? \\ $$ Answered by benjo last updated on 26/Dec/19 $$\mathrm{a}×\mathrm{b}\:=\mathrm{0}…

is-A-A-2-A-F-A-F-A-2-A-the-same-

Question Number 9604 by madscientist last updated on 20/Dec/16 $${is}\: \\ $$$$\bigtriangledown×\left(\bigtriangledown×{A}\right)=\bigtriangledown\left(\bigtriangledown\centerdot{A}\right)−\bigtriangledown^{\mathrm{2}} {A} \\ $$$${F}×\left(\bigtriangledown×{A}\right)={F}\left(\bigtriangledown\centerdot{A}\right)−\bigtriangledown^{\mathrm{2}} {A} \\ $$$${the}\:{same}? \\ $$ Terms of Service Privacy Policy…

the-vector-equations-of-two-lines-L-1-and-L-2-is-given-by-L-1-r-i-j-3k-i-j-k-L-2-r-2i-aj-6k-2i-j-3k-where-a-are-real-constants-given-that-L-1-and-L-2-intersect-find-a-

Question Number 75101 by Rio Michael last updated on 07/Dec/19 $${the}\:{vector}\:{equations}\:{of}\:{two}\:{lines}\:{L}_{\mathrm{1}} \:{and}\:{L}_{\mathrm{2}} \:{is}\:{given}\:{by} \\ $$$$\:{L}_{\mathrm{1}} :{r}=\:\boldsymbol{{i}}−\boldsymbol{{j}}+\mathrm{3}\boldsymbol{{k}}\:+\:\lambda\left(\boldsymbol{{i}}−\boldsymbol{{j}}\:+\boldsymbol{{k}}\right) \\ $$$${L}_{\mathrm{2}} \::\:{r}=\:\mathrm{2}\boldsymbol{{i}}+{a}\boldsymbol{{j}}\:+\:\mathrm{6}\boldsymbol{{k}}\:+\:\mu\left(\mathrm{2}\boldsymbol{{i}}\:+\:\boldsymbol{{j}}\:+\:\mathrm{3}\boldsymbol{{k}}\right) \\ $$$${where}\:{a},\lambda,\mu\:{are}\:{real}\:{constants}. \\ $$$${given}\:{that}\:{L}_{\mathrm{1}} \:{and}\:{L}_{\mathrm{2}} \:{intersect}\:{find}…