Menu Close

Category: Vector Calculus

A-particle-P-is-projected-from-a-point-O-at-the-edge-of-a-cliff-60m-from-the-sea-with-a-velocity-of-30ms-1-When-P-is-at-a-point-B-where-OB-is-a-horizontal-another-particle-Qsuch-that-P-and-Q-

Question Number 71198 by Rio Michael last updated on 13/Oct/19 $${A}\:{particle}\:{P}\:{is}\:{projected}\:{from}\:\:{a}\:{point}\:{O}\:{at}\:\:{the}\:{edge}\:{of}\:{a}\:{cliff}\:\mathrm{60}{m} \\ $$$${from}\:{the}\:{sea}\:{with}\:{a}\:{velocity}\:{of}\:\mathrm{30}{ms}^{−\mathrm{1}} .\:{When}\:{P}\:{is}\:{at}\:{a}\:{point}\:{B} \\ $$$${where}\:{OB}\:{is}\:{a}\:{horizontal},\:{another}\:{particle}\:{Qsuch}\:{that}\: \\ $$$${P}\:{and}\:{Q}\:{hit}\:{the}\:{sea}\:{simultaneously}\:{at}\:{thesame}\:{point}\:{A}.\:{Gven}\:{that}\:{they} \\ $$$${strike}\:{the}\:{sea}\:\mathrm{6}{seconds}\:{after}\:{P}\:{was}\:{fired}\bar {\:}\:{calculate} \\ $$$$\left.{a}\right)\:{the}\:{sine}\:{of}\:{the}\:{angle}\:{of}\:{elevation}\:{of}\:{projection}. \\ $$$$\left.{b}\right)\:{the}\:{distance}\:{from}\:{A}\:{to}\:{O}.…

8-

Question Number 5466 by 3 last updated on 15/May/16 $$\sqrt{\mathrm{8}} \\ $$ Answered by FilupSmith last updated on 15/May/16 $$\sqrt{\mathrm{8}}=\sqrt{\mathrm{4}×\mathrm{2}} \\ $$$$=\sqrt{\mathrm{4}}\sqrt{\mathrm{2}} \\ $$$$\therefore\sqrt{\mathrm{8}}=\mathrm{2}\sqrt{\mathrm{2}} \\…

Prove-that-The-necessary-and-sufficient-condition-that-the-curve-be-plane-curve-is-r-r-r-0-OR-A-curve-is-plane-curve-iff-0-

Question Number 70876 by Fakhar last updated on 09/Oct/19 $$\mathrm{Prove}\:\mathrm{that} \\ $$$$\mathrm{The}\:\mathrm{necessary}\:\mathrm{and}\:\mathrm{sufficient}\:\mathrm{condition} \\ $$$$\mathrm{that}\:\mathrm{the}\:\mathrm{curve}\:\mathrm{be}\:\mathrm{plane}\:\left(\mathrm{curve}\right)\:\mathrm{is} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\left[\boldsymbol{\mathrm{r}}',\boldsymbol{\mathrm{r}}'',\boldsymbol{\mathrm{r}}'''\right]=\mathrm{0}. \\ $$$$\:\mathrm{OR}\:\:\:\: \\ $$$$\mathrm{A}\:\mathrm{curve}\:\mathrm{is}\:\mathrm{plane}\:\mathrm{curve}\:\mathrm{iff}\:\tau=\mathrm{0}. \\ $$ Terms of Service…

proof-e-i-cos-isin-

Question Number 5153 by 1771727373 last updated on 23/Apr/16 $${proof}\:\:\:\:{e}^{{i}\Theta} ={cos}\left(\Theta\right)+{isin}\left(\Theta\right) \\ $$ Answered by 123456 last updated on 23/Apr/16 $$\mathrm{lets}\:{f}\left(\theta\right)=\mathrm{cos}\:\theta+{i}\mathrm{sin}\:\theta,{f}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$$\frac{\partial{f}}{\partial\theta}=−\mathrm{sin}\:\theta+{i}\mathrm{cos}\:\theta={i}\left(\mathrm{cos}\:\theta+{i}\mathrm{sin}\:\theta\right)={if} \\ $$$$\frac{{df}}{{f}}={id}\theta…