Menu Close

Category: Vector Calculus

Question-100074

Question Number 100074 by kungmikami last updated on 24/Jun/20 Answered by smridha last updated on 25/Jun/20 $$\int_{\mathrm{0}} ^{\mathrm{1}} \left[\int_{\mathrm{0}} ^{\sqrt{\boldsymbol{{y}}}} \left(\boldsymbol{{x}}^{\mathrm{2}} \boldsymbol{{y}}+\boldsymbol{{xy}}^{\mathrm{2}} \right)\boldsymbol{{dx}}\right]\boldsymbol{{dy}} \\ $$$$=\int_{\mathrm{0}}…

Find-the-shortest-distance-between-the-skew-lines-x-3-3-8-y-1-z-3-1-and-x-3-3-y-7-2-z-6-4-

Question Number 98119 by bobhans last updated on 11/Jun/20 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{shortest}\:\mathrm{distance}\:\mathrm{between}\:\mathrm{the} \\ $$$$\mathrm{skew}\:\mathrm{lines}\:\frac{\mathrm{x}−\mathrm{3}}{\mathrm{3}}\:=\:\frac{\mathrm{8}−\mathrm{y}}{\mathrm{1}}\:=\:\frac{\mathrm{z}−\mathrm{3}}{\mathrm{1}}\:\mathrm{and}\: \\ $$$$\frac{\mathrm{x}+\mathrm{3}}{−\mathrm{3}}\:=\:\frac{\mathrm{y}+\mathrm{7}}{\mathrm{2}}\:=\:\frac{\mathrm{z}−\mathrm{6}}{\mathrm{4}}\:. \\ $$ Commented by john santu last updated on 11/Jun/20 $$\mathrm{shortest}\:\mathrm{distance}\:\mathrm{lies}\:\mathrm{along}\:\mathrm{a}\:\mathrm{direction}…

x-2-1-x-

Question Number 32402 by saru53424@gmail.com last updated on 24/Mar/18 $$\int\frac{{x}+\mathrm{2}}{\mathrm{1}−{x}} \\ $$ Commented by abdo imad last updated on 24/Mar/18 $$\int\frac{{x}+\mathrm{2}}{\mathrm{1}−{x}}{dx}\:=−\int\:\frac{{x}+\mathrm{2}}{{x}−\mathrm{1}}{dx}\:=−\:\int\frac{{x}−\mathrm{1}+\mathrm{3}}{{x}−\mathrm{1}}{dx} \\ $$$$=−{x}\:−\mathrm{3}\int\:\frac{{dx}}{{x}−\mathrm{1}}\:=−{x}\:−\mathrm{3}{ln}\mid{x}−\mathrm{1}\mid\:+\lambda\:. \\ $$…

Question-97353

Question Number 97353 by john santu last updated on 07/Jun/20 Answered by abdomathmax last updated on 07/Jun/20 $$\left.\mathrm{6}\right)\:\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{arcsin}\left(\frac{\mathrm{x}−\mathrm{1}}{\mathrm{x}+\mathrm{1}}\right)\:\mathrm{and}\:\mathrm{g}\left(\mathrm{x}\right)=\mathrm{2arctan}\sqrt{\mathrm{x}}−\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{f}^{'} \left(\mathrm{x}\right)\:=\frac{\left(\frac{\mathrm{x}−\mathrm{1}}{\mathrm{x}+\mathrm{1}}\right)^{'} }{\:\sqrt{\mathrm{1}−\left(\frac{\mathrm{x}−\mathrm{1}}{\mathrm{x}+\mathrm{1}}\right)^{\mathrm{2}} }}\:=\frac{\mathrm{2}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} \sqrt{\frac{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} −\left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{2}}…

find-the-angle-of-plane-2x-y-2z-1-and-x-3y-2z-2-

Question Number 95509 by i jagooll last updated on 25/May/20 $$\mathrm{find}\:\mathrm{the}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{plane} \\ $$$$\mathrm{2x}−\mathrm{y}+\mathrm{2z}=\mathrm{1}\:\mathrm{and}\:\mathrm{x}+\mathrm{3y}−\mathrm{2z}\:=\:\mathrm{2} \\ $$ Answered by bobhans last updated on 25/May/20 $$\mathrm{let}\:\beta\:=\:\mathrm{angle}\:\mathrm{the}\:\mathrm{plane}\: \\ $$$$\mathrm{cos}\:\beta\:=\:\frac{\mid\mathrm{2}.\mathrm{1}+\left(−\mathrm{1}\right).\mathrm{3}+\mathrm{2}.\left(−\mathrm{2}\right)\mid}{\:\sqrt{\mathrm{9}}\:\sqrt{\mathrm{14}}}\:=\:\frac{\mathrm{5}}{\mathrm{3}\sqrt{\mathrm{14}}}…