Question Number 202771 by ali009 last updated on 03/Jan/24 $${determine}\:{whether}\:{this}\:{signal}\:{is}\:{periodic} \\ $$$${or}\:{not}\:{if}\:{it}'{s}\:{periodic}\:{specify}\:{it}'{s}\: \\ $$$${faundemwntal}\:{period} \\ $$$${y}\left({n}\right)={cos}\left(\frac{{n}}{\mathrm{8}}\right){cos}\left(\frac{{n}\pi}{\mathrm{8}}\right)\: \\ $$ Answered by Frix last updated on 03/Jan/24…
Question Number 107350 by Learner-123 last updated on 10/Aug/20 Answered by JDamian last updated on 10/Aug/20 $$\left.\mathrm{1}\right)\:\mathrm{10} \\ $$ Commented by Learner-123 last updated on…
Question Number 170917 by ali009 last updated on 03/Jun/22 $${consider}\:{g}\left({t}\right)=\mathrm{6}{sinc}\left(\mathrm{6}{t}\right) \\ $$$${plot}\:{the}\:{spectrum}\:{DSB}-{LC}\:{signal} \\ $$$${S}_{{AM}} \left({t}\right)={g}\left({t}\right){cos}\left(\mathrm{200}\pi{t}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 169751 by ali009 last updated on 07/May/22 $${find}\:\:{the}\:{forier}\:{transform}\:{of} \\ $$$${g}\left({t}\right)=\mathrm{cos}^{\mathrm{2}} \left(\mathrm{2}\pi\:\mathrm{f}_{\mathrm{c}} \:\mathrm{t}\right)\:\:\: \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 163985 by Eric002 last updated on 12/Jan/22 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 163978 by Eric002 last updated on 12/Jan/22 Commented by Eric002 last updated on 12/Jan/22 $${a}\:{continuous}\:{time}\:{signal}\:{shown}\:{in}\:{the} \\ $$$${fig}.{determine}\:{the}\:{following}\:{version}\:{of} \\ $$$${the}\:{signal} \\ $$$$\left.{a}\right){x}\left({t}+\mathrm{2}\right)\:\: \\ $$$$\left.{b}\right)−\left({x}\right){t}\:\:…
Question Number 159868 by Eric002 last updated on 21/Nov/21 $${prove}\:{that} \\ $$$$\int_{−\infty} ^{+\infty} \delta\left({t}\right){dt}=\mathrm{1} \\ $$$$\delta\left({t}\right)\:{is}\:{dirac}\:{delta}\:{function}\:\left({impluse}\:{function}\right) \\ $$ Answered by mindispower last updated on 22/Nov/21…
Question Number 158182 by Eric002 last updated on 31/Oct/21 Commented by Eric002 last updated on 31/Oct/21 $${find}\:{the}\:{even}\:{and}\:{odd}\:{components}\:{of} \\ $$$${X}\left({t}\right). \\ $$ Answered by aleks041103 last…