Menu Close

Category: Mechanics

Question-26924

Question Number 26924 by Tinkutara last updated on 31/Dec/17 Answered by mrW1 last updated on 31/Dec/17 $${k}={spring}\:{constant} \\ $$$${u}={deformation}\:{of}\:{spring}\:{under}\:{force} \\ $$$${u}_{\mathrm{2}} ={max}.\:{deformation}\:{of}\:{spring}\:{after}\:{release} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{ku}^{\mathrm{2}} −{m}_{{A}}…

Question-26864

Question Number 26864 by Tinkutara last updated on 30/Dec/17 Answered by ajfour last updated on 31/Dec/17 $${i}\:{thought}\:{one}\:{third}\:{overhanged}. \\ $$$${Now}\:{since}\:{one}\:{third}\:{part}\:{lies}\:{on} \\ $$$${table}\:{initially},\:{we}\:{can}\:{think}\:{this} \\ $$$${transmitted}\:{to}\:{join}\:{the}\:{lower} \\ $$$${end}\:{of}\:{the}\:{hanging}\:{part}\:{by}\:{the}…

Question-26799

Question Number 26799 by 803jaideep@gmail.com last updated on 29/Dec/17 Answered by mrW1 last updated on 29/Dec/17 $${I}=\int{d}^{\mathrm{2}} {dm} \\ $$$${dm}=\rho{dV}=\rho{rdrd}\theta{dz} \\ $$$${d}^{\mathrm{2}} ={z}^{\mathrm{2}} +\left({r}\mathrm{cos}\:\theta\right)^{\mathrm{2}} ={z}^{\mathrm{2}}…

Question-157775

Question Number 157775 by mr W last updated on 27/Oct/21 Commented by mr W last updated on 28/Oct/21 $${let}'{s}\:{say}\:{we}\:{have}\:{a}\:{column},\:{composed} \\ $$$${of}\:{concrete}\:{and}\:{steel}.\: \\ $$$${say}\:{the}\:{cross}−{section}\:{of}\:{concrete}\: \\ $$$${is}\:{A}_{{C}}…

Good-day-Mr-W-I-would-have-loved-to-send-this-privately-to-you-but-there-s-nomeans-of-doing-that-You-assisted-me-in-solving-a-problem-and-the-answers-are-really-correct-I-was-also-understandinv-the

Question Number 157730 by chuxx last updated on 27/Oct/21 $${Good}\:{day}\:{Mr}.{W},\:{I}\:{would}\:{have}\:{loved} \\ $$$${to}\:{send}\:{this}\:{privately}\:{to}\:{you}\:{but} \\ $$$${there}'{s}\:{nomeans}\:{of}\:{doing}\:{that}.\:{You} \\ $$$${assisted}\:{me}\:{in}\:{solving}\:{a}\:{problem} \\ $$$${and}\:{the}\:{answers}\:{are}\:{really}\:{correct};\:{I} \\ $$$${was}\:{also}\:{understandinv}\:{the}\:{approach} \\ $$$${however}\:{some}\:{points}\:{got}\:{me}\:{lost}. \\ $$$${I}'{ll}\:{be}\:{most}\:{grateful}\:{if}\:{you}\:{could} \\…

A-man-of-mass-M-is-standing-on-a-platform-of-mass-m-1-holding-a-string-passing-over-a-system-of-ideal-pulleys-Another-mass-m-2-is-hanging-as-shown-m-2-20-kg-m-1-10-kg-g-10-m-s-2-Force-

Question Number 26450 by Tinkutara last updated on 25/Dec/17 $$\mathrm{A}\:\mathrm{man}\:\mathrm{of}\:\mathrm{mass}\:{M}\:\mathrm{is}\:\mathrm{standing}\:\mathrm{on}\:\mathrm{a} \\ $$$$\mathrm{platform}\:\mathrm{of}\:\mathrm{mass}\:{m}_{\mathrm{1}} \:\mathrm{holding}\:\mathrm{a}\:\mathrm{string} \\ $$$$\mathrm{passing}\:\mathrm{over}\:\mathrm{a}\:\mathrm{system}\:\mathrm{of}\:\mathrm{ideal}\:\mathrm{pulleys}. \\ $$$$\mathrm{Another}\:\mathrm{mass}\:{m}_{\mathrm{2}} \:\mathrm{is}\:\mathrm{hanging}\:\mathrm{as}\:\mathrm{shown} \\ $$$$\left({m}_{\mathrm{2}} \:=\:\mathrm{20}\:\mathrm{kg},\:{m}_{\mathrm{1}} \:=\:\mathrm{10}\:\mathrm{kg},\:{g}\:=\:\mathrm{10}\:\mathrm{m}/\mathrm{s}^{\mathrm{2}} \right) \\ $$$$\mathrm{Force}\:\mathrm{exerted}\:\mathrm{by}\:\mathrm{man}\:\mathrm{on}\:\mathrm{string}\:\mathrm{to}…

Find-the-moment-of-inertia-and-the-radius-of-gyration-of-a-circular-plate-about-an-axis-through-its-centre-perpendicular-to-the-plane-of-the-plate-

Question Number 26181 by NECx last updated on 21/Dec/17 $${Find}\:{the}\:{moment}\:{of}\:{inertia}\:{and} \\ $$$${the}\:{radius}\:{of}\:{gyration}\:{of}\:{a}\: \\ $$$${circular}\:{plate}\:{about}\:{an}\:{axis}\:{through} \\ $$$${its}\:{centre},{perpendicular}\:{to}\:{the} \\ $$$${plane}\:{of}\:{the}\:{plate}. \\ $$ Answered by mrW1 last updated…

For-an-axis-passing-through-the-centre-of-mass-of-a-rectangular-plate-along-its-length-Show-that-its-moment-of-inertia-is-ML-2-12-and-the-radius-of-gyration-is-L-2-3-

Question Number 26179 by NECx last updated on 21/Dec/17 $${For}\:{an}\:{axis}\:{passing}\:{through}\:{the} \\ $$$${centre}\:{of}\:{mass}\:{of}\:{a}\:{rectangular} \\ $$$${plate}\left({along}\:{its}\:{length}\right).{Show}\:{that} \\ $$$${its}\:{moment}\:{of}\:{inertia}\:{is}\:\frac{{ML}^{\mathrm{2}} }{\mathrm{12}}\:{and} \\ $$$${the}\:{radius}\:{of}\:{gyration}\:{is}\:\frac{{L}}{\mathrm{2}\sqrt{\mathrm{3}}.} \\ $$ Answered by mrW1 last…

The-figure-given-below-is-the-section-of-the-reinforced-concrete-short-column-Calculate-the-stress-in-the-concrete-and-the-stress-in-the-steel-if-the-axial-load-of-780KN-is-applied-to-the-column-Yo

Question Number 157139 by chuxx last updated on 20/Oct/21 $${The}\:{figure}\:{given}\:{below}\:{is}\:{the}\:{section} \\ $$$${of}\:{the}\:{reinforced}\:{concrete}\:{short}\:{column}. \\ $$$${Calculate}\:{the}\:{stress}\:{in}\:{the}\:{concrete} \\ $$$${and}\:{the}\:{stress}\:{in}\:{the}\:{steel},{if}\:{the} \\ $$$${axial}\:{load}\:{of}\:\mathrm{780}{KN}\:{is}\:{applied}\:{to} \\ $$$${the}\:{column}. \\ $$$$ \\ $$$${Young}'{s}\:{modulus}\:{of}\:{steel}=\mathrm{210}{KN}/{mm}^{\mathrm{2}} \\…