Question Number 120132 by Dwaipayan Shikari last updated on 29/Oct/20 $${Suppose}\:{you}\:{are}\:{in}\:{a}\:{imagnary}\:{train}\:{which}\:{travels}\:{at}\:{the}\:{half}\: \\ $$$${of}\:{the}\:{speed}\:{of}\:{light}.\:{Suppose}\:{You}\:{have}\:{a}\:{brother}\:{who}\:{is}\:\mathrm{7}\:{year} \\ $$$${smaller}\:{than}\:{you}.\:{He}\:{stands}\:{on}\:{the}\:{platform}\:{which}\:{you}\:{had}\:{left}. \\ $$$${After}\:\mathrm{1}\:{hour}\:{of}\:{travelling}\:{on}\:{the}\:{train}\:{you}\:{come}\:{back}\:{on}\:{the} \\ $$$${platform}.\:{Then}\:{you}\:{observe}\:{something}\:{strange}.\:{You}\:{can}\:{see} \\ $$$${your}\:{brother}\:{looks}\:{older}\:.\:{So}\:{what}\:{is}\:{his}\:{age}?\left({He}\:{was}\:{ten}\:{years}\right. \\ $$$$\left.{old}\right) \\ $$…
Question Number 53998 by estudiante last updated on 27/Jan/19 $$\mathrm{In}\:\mathrm{the}\:\mathrm{next}\:\mathrm{link},\:\mathrm{Barry}\:\mathrm{Barrish},\:\mathrm{who}\:\mathrm{won}\:\mathrm{the}\:\mathrm{physic}\:\mathrm{nobel}\:\mathrm{prize}\:\mathrm{in}\:\mathrm{2017}; \\ $$$$\mathrm{gave}\:\mathrm{an}\:\mathrm{exclusive}\:\mathrm{interview}\:\mathrm{to}\:\mathrm{IFT}-{Instituto}\:{de}\:{Fisica}\:{Te}\acute {{o}rica}-\left(\mathrm{part}\:\mathrm{1}\right): \\ $$ Commented by estudiante last updated on 27/Jan/19 https://www.youtube.com/watch?v=vkriiyYHLmY Terms of…
Question Number 53852 by estudiante last updated on 26/Jan/19 $${G}_{\mu\nu} =\:{R}_{\mu\nu} −\:\frac{\mathrm{1}}{\mathrm{2}}\:{Rg}_{\mu\nu} \:+\:\boldsymbol{\Lambda}{g}_{\mu\nu} \\ $$$$\mathrm{Wich}\:\mathrm{theory}\:\mathrm{of}\:\mathrm{modern}\:\mathrm{physic}\:\mathrm{belongs}\:\mathrm{this}\:\mathrm{equation}? \\ $$$$\mathrm{and}\:\mathrm{what}\:\mathrm{does}\:\mathrm{it}\:\mathrm{mean}? \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 53165 by peter frank last updated on 18/Jan/19 Answered by peter frank last updated on 18/Jan/19 $${half}\:{life}\:\left({T}\right) \\ $$$${T}=\frac{\mathrm{0}.\mathrm{693}}{\lambda}…….\left({i}\right) \\ $$$${activity}=\frac{{dN}}{{dt}}={N}\lambda…..\left({ii}\right) \\ $$$$\mathrm{226}{g}\rightarrow\mathrm{6}.\mathrm{023}×\mathrm{10}^{\mathrm{23}}…
Question Number 118633 by wsyip last updated on 18/Oct/20 $$ \\ $$$$\left(\mathrm{4}.\mathrm{1}\right)\:\:\:\psi_{\mu} \left(\boldsymbol{{x}}\right)\equiv\langle\boldsymbol{{x}},\mu\mid\psi\rangle \\ $$$$\left(\mathrm{4}.\mathrm{2}\right)\:\:\:\psi_{\mu} \left(\boldsymbol{{x}}−\boldsymbol{{a}}\right)=\left[\mathrm{1}−\boldsymbol{{a}}\bullet\frac{\partial}{\partial\boldsymbol{{x}}}+\frac{\mathrm{1}}{\mathrm{2}!}\left(\boldsymbol{{a}}\bullet\frac{\partial}{\partial\boldsymbol{{x}}}\right)^{\mathrm{2}} −\ldots\right]\psi_{\mu} \left(\boldsymbol{{x}}\right) \\ $$$$\:\:\:\:\:\:={exp}\left(−\boldsymbol{{a}}\bullet\frac{\partial}{\partial\boldsymbol{{x}}}\right)\psi_{\mu} \left(\boldsymbol{{x}}\right)=\langle\boldsymbol{{x}},\mu\mid{exp}\left(−{i}\frac{\boldsymbol{{a}}\bullet\boldsymbol{{p}}}{\bar {{h}}}\right)\mid\psi\rangle \\ $$$$\left(\mathrm{4}.\mathrm{3}\right)\:\:\:\mid\psi^{'} \rangle\equiv{U}\left(\boldsymbol{{a}}\right)\mid\psi\rangle\:\:\:;\:{U}\left(\boldsymbol{{a}}\right)\equiv{exp}\left(−{i}\boldsymbol{{a}}\bullet\boldsymbol{{p}}/\bar…
Question Number 52846 by peter frank last updated on 13/Jan/19 Answered by peter frank last updated on 14/Jan/19 Commented by peter frank last updated on…
Question Number 52845 by peter frank last updated on 13/Jan/19 Answered by peter frank last updated on 14/Jan/19 Commented by peter frank last updated on…
Question Number 52457 by Necxx last updated on 07/Jan/19 $${Two}\:{radioactive}\:{elements}\:{A}\:{and}\:{B} \\ $$$${has}\:{half}\:{lives}\:{of}\:\mathrm{100}\:{and}\:\mathrm{50}{years}. \\ $$$${Samples}\:{of}\:{A}\:{and}\:{B}\:{initial}\:{contains} \\ $$$${equal}\:{numbers}\:{of}\:{atoms}.{What}\:{is} \\ $$$${the}\:{ratio}\:{of}\:{the}\:{remaining}\:{atoms} \\ $$$${of}\:{A}\:{to}\:{that}\:{of}\:{B}\:{after}\:\mathrm{200}{years}? \\ $$ Answered by MJS…
Question Number 116078 by Study last updated on 30/Sep/20 $${prove}\:{that}\:\:\:{Fr}=\frac{{v}^{\mathrm{2}} }{{gh}}\:\:\:\:{froude}\:{numer} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 116079 by Study last updated on 30/Sep/20 $${prove}\:{that}\:{Re}=\frac{\rho\centerdot{v}\centerdot{d}}{\mu}\:\:\:\:\:{renulds}\:{number} \\ $$ Answered by Olaf last updated on 01/Oct/20 $$\mathrm{It}\:\mathrm{suffices}\:\mathrm{to}\:\mathrm{resize}\:\mathrm{the}\:\mathrm{Navier}−\mathrm{Stokes} \\ $$$$\mathrm{equations}.\:\mathrm{The}\:\mathrm{dimensionless}\:\mathrm{factor} \\ $$$$\frac{\rho{vd}}{\mu}\:\mathrm{appears}\:\mathrm{naturally}.\:\mathrm{This}\:\mathrm{is}\:\mathrm{the} \\…