Menu Close

Search Results for: complex

calculate-by-complex-method-0-dx-x-2-x-1-

Question Number 86375 by mathmax by abdo last updated on 28/Mar/20 $${calculate}\:{by}\:{complex}\:{method}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} −{x}+\mathrm{1}} \\ $$ Commented by mathmax by abdo last updated on…

calculate-bycomplex-method-1-dx-1-x-2-

Question Number 86374 by mathmax by abdo last updated on 28/Mar/20 $${calculate}\:{bycomplex}\:{method}\:\:\int_{\mathrm{1}} ^{+\infty} \:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$ Commented by mathmax by abdo last updated on…

Show-that-if-z-1-z-2-z-3-z-4-0-and-z-1-z-2-0-then-the-complex-numbers-z-1-z-2-z-3-z-4-are-concyclic-

Question Number 20549 by Tinkutara last updated on 28/Aug/17 $${Show}\:{that}\:{if}\:{z}_{\mathrm{1}} {z}_{\mathrm{2}} \:+\:{z}_{\mathrm{3}} {z}_{\mathrm{4}} \:=\:\mathrm{0}\:{and}\:{z}_{\mathrm{1}} \:+ \\ $$$${z}_{\mathrm{2}} \:=\:\mathrm{0},\:{then}\:{the}\:{complex}\:{numbers}\:{z}_{\mathrm{1}} , \\ $$$${z}_{\mathrm{2}} ,\:{z}_{\mathrm{3}} ,\:{z}_{\mathrm{4}} \:{are}\:{concyclic}. \\…

Find-the-equation-of-circle-in-complex-form-which-touches-iz-z-1-i-0-and-for-which-the-lines-1-i-z-1-i-z-and-1-i-z-i-1-z-4i-0-are-normals-

Question Number 20550 by Tinkutara last updated on 28/Aug/17 $${Find}\:{the}\:{equation}\:{of}\:{circle}\:{in}\:{complex} \\ $$$${form}\:{which}\:{touches}\:{iz}\:+\:\bar {{z}}\:+\:\mathrm{1}\:+\:{i}\:=\:\mathrm{0} \\ $$$${and}\:{for}\:{which}\:{the}\:{lines}\:\left(\mathrm{1}\:−\:{i}\right){z}\:= \\ $$$$\left(\mathrm{1}\:+\:{i}\right)\bar {{z}}\:{and}\:\left(\mathrm{1}\:+\:{i}\right){z}\:+\:\left({i}\:−\:\mathrm{1}\right)\bar {{z}}\:−\:\mathrm{4}{i}\:=\:\mathrm{0} \\ $$$${are}\:{normals}. \\ $$ Answered by…

If-z-x-iy-is-a-complex-number-satisfying-z-i-2-2-z-i-2-2-then-the-locus-of-z-is-

Question Number 19739 by Tinkutara last updated on 15/Aug/17 $$\mathrm{If}\:{z}\:=\:{x}\:+\:{iy}\:\mathrm{is}\:\mathrm{a}\:\mathrm{complex}\:\mathrm{number} \\ $$$$\mathrm{satisfying}\:\mid{z}\:+\:\frac{{i}}{\mathrm{2}}\mid^{\mathrm{2}} \:=\:\mid{z}\:−\:\frac{{i}}{\mathrm{2}}\mid^{\mathrm{2}} ,\:\mathrm{then} \\ $$$$\mathrm{the}\:\mathrm{locus}\:\mathrm{of}\:{z}\:\mathrm{is} \\ $$ Answered by ajfour last updated on 15/Aug/17…

If-the-imaginary-part-of-2z-1-iz-1-is-2-then-the-locus-of-the-point-representing-z-in-the-complex-plane-is-

Question Number 19734 by Tinkutara last updated on 15/Aug/17 $$\mathrm{If}\:\mathrm{the}\:\mathrm{imaginary}\:\mathrm{part}\:\mathrm{of}\:\frac{\mathrm{2}{z}\:+\:\mathrm{1}}{{iz}\:+\:\mathrm{1}}\:\mathrm{is}\:−\mathrm{2}, \\ $$$$\mathrm{then}\:\mathrm{the}\:\mathrm{locus}\:\mathrm{of}\:\mathrm{the}\:\mathrm{point}\:\mathrm{representing} \\ $$$${z}\:\mathrm{in}\:\mathrm{the}\:\mathrm{complex}\:\mathrm{plane}\:\mathrm{is} \\ $$ Answered by ajfour last updated on 15/Aug/17 $$\:\:\frac{\mathrm{2z}+\mathrm{1}}{\mathrm{iz}+\mathrm{1}}=\frac{\left(\mathrm{2z}+\mathrm{1}\right)\left(\mathrm{1}−\mathrm{i}\bar {\mathrm{z}}\right)}{\left(\mathrm{iz}+\mathrm{1}\right)\left(\mathrm{1}−\mathrm{i}\bar…

If-z-2-then-the-points-representing-the-complex-numbers-1-5z-will-lie-on-a-1-Circle-2-Straight-line-3-Parabola-4-Ellipse-

Question Number 19629 by Tinkutara last updated on 13/Aug/17 $$\mathrm{If}\:\mid{z}\mid\:=\:\mathrm{2},\:\mathrm{then}\:\mathrm{the}\:\mathrm{points}\:\mathrm{representing} \\ $$$$\mathrm{the}\:\mathrm{complex}\:\mathrm{numbers}\:−\mathrm{1}\:+\:\mathrm{5}{z}\:\mathrm{will}\:\mathrm{lie} \\ $$$$\mathrm{on}\:\mathrm{a} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{Circle} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{Straight}\:\mathrm{line} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{Parabola} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{Ellipse} \\ $$ Answered…

Prove-that-two-straight-lines-with-complex-slopes-1-and-2-are-parallel-and-perpendicular-according-as-1-2-and-1-2-0-Hence-if-the-straight-lines-z-z-c-0-and-z

Question Number 19505 by Tinkutara last updated on 12/Aug/17 $$\mathrm{Prove}\:\mathrm{that}\:\mathrm{two}\:\mathrm{straight}\:\mathrm{lines}\:\mathrm{with} \\ $$$$\mathrm{complex}\:\mathrm{slopes}\:\mu_{\mathrm{1}} \:\mathrm{and}\:\mu_{\mathrm{2}} \:\mathrm{are}\:\mathrm{parallel} \\ $$$$\mathrm{and}\:\mathrm{perpendicular}\:\mathrm{according}\:\mathrm{as}\:\mu_{\mathrm{1}} \:=\:\mu_{\mathrm{2}} \\ $$$$\mathrm{and}\:\mu_{\mathrm{1}} \:+\:\mu_{\mathrm{2}} \:=\:\mathrm{0}.\:\mathrm{Hence}\:\mathrm{if}\:\mathrm{the}\:\mathrm{straight} \\ $$$$\mathrm{lines}\:\bar {\alpha}{z}\:+\:\alpha\bar {{z}}\:+\:{c}\:=\:\mathrm{0}\:\mathrm{and}\:\bar…

Find-the-locus-of-the-points-represented-by-the-complex-number-z-such-that-2-z-3-z-6i-

Question Number 83991 by Rio Michael last updated on 08/Mar/20 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{locus}\:\mathrm{of}\:\mathrm{the}\:\mathrm{points}\:\mathrm{represented}\:\mathrm{by} \\ $$$$\mathrm{the}\:\mathrm{complex}\:\mathrm{number}\:,{z},\:\mathrm{such}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{2}\mid{z}−\mathrm{3}\mid\:=\:\mid{z}−\mathrm{6i}\mid \\ $$ Commented by mathmax by abdo last updated on…

prove-that-for-any-complex-number-z-if-z-lt-1-then-Re-z-1-gt-0-

Question Number 83966 by Rio Michael last updated on 08/Mar/20 $$\mathrm{prove}\:\mathrm{that}\:\mathrm{for}\:\mathrm{any}\:\mathrm{complex}\:\mathrm{number}\:{z},\:\mathrm{if}\: \\ $$$$\:\mid{z}\mid\:<\:\mathrm{1},\:\mathrm{then}\:\mathrm{Re}\left({z}\:+\:\mathrm{1}\right)\:>\:\mathrm{0} \\ $$ Answered by mr W last updated on 08/Mar/20 $${let}\:{z}={a}+{bi} \\…