Question Number 140442 by EnterUsername last updated on 07/May/21 $$\mathrm{If}\:{z}_{\mathrm{1}} \:\mathrm{and}\:{z}_{\mathrm{2}} \:\mathrm{are}\:\mathrm{complex}\:\mathrm{numbers}\:\mathrm{such}\:\mathrm{that}\:\mid{z}_{\mathrm{2}} \mid\neq\mathrm{1}\:\mathrm{and} \\ $$$$\mid\left({z}_{\mathrm{1}} −\mathrm{2}{z}_{\mathrm{2}} \right)/\left(\mathrm{2}−{z}_{\mathrm{1}} \bar {{z}}_{\mathrm{2}} \right)\mid=\mathrm{1},\:\mathrm{then}\:\mid{z}_{\mathrm{1}} \mid\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:\_\_\_\_\_. \\ $$ Answered by…
Search Results for: complex
Question Number 140260 by EnterUsername last updated on 05/May/21 $$\mathrm{Passage}:\:\mathrm{If}\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} \:\mathrm{and}\:{z}_{\mathrm{3}} \:\mathrm{are}\:\mathrm{three}\:\mathrm{complex}\:\mathrm{numbers} \\ $$$$\mathrm{representing}\:\mathrm{the}\:\mathrm{points}\:{A},\:{B}\:\mathrm{and}\:{C},\:\mathrm{respectively},\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{Argands}\:\mathrm{plane}\:\mathrm{and}\:\angle{BAC}=\alpha,\:\mathrm{then} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{z}_{\mathrm{3}} −{z}_{\mathrm{1}} }{{z}_{\mathrm{2}} −{z}_{\mathrm{1}} }=\left(\frac{{AC}}{{AB}}\right)\left(\mathrm{cos}\alpha+{i}\mathrm{sin}\alpha\right) \\ $$$$\left({i}\right)\:\mathrm{If}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation}…
Question Number 140248 by EnterUsername last updated on 05/May/21 $$\mathrm{Let}\:{p}\:\mathrm{and}\:{q}\:\mathrm{be}\:\mathrm{positive}\:\mathrm{integers}\:\mathrm{having}\:\mathrm{no}\:\mathrm{positive} \\ $$$$\mathrm{common}\:\mathrm{divisors}\:\mathrm{except}\:\mathrm{unity}.\:\mathrm{Let}\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} ,…,\:{z}_{{q}} \:\mathrm{be}\:\mathrm{the} \\ $$$${q}\:\mathrm{values}\:\mathrm{of}\:{z}^{{p}/{q}} ,\:\mathrm{where}\:{z}\:\mathrm{is}\:\mathrm{a}\:\mathrm{fixed}\:\mathrm{complex}\:\mathrm{number}.\:\mathrm{Then} \\ $$$$\mathrm{the}\:\mathrm{product}\:{z}_{\mathrm{1}} {z}_{\mathrm{2}} …{z}_{{q}} \:\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$$$\left(\mathrm{A}\right)\:{z}^{{p}}…
Question Number 140205 by EnterUsername last updated on 05/May/21 $${ABCD}\:\mathrm{is}\:\mathrm{a}\:\mathrm{rhombus}.\:\mathrm{Its}\:\mathrm{diagonals}\:{AC}\:\mathrm{and}\:{BD}\:\mathrm{inter}- \\ $$$$\mathrm{sect}\:\mathrm{at}\:{M}\:\mathrm{and}\:\mathrm{satisfy}\:{BD}=\mathrm{2}{AC}.\:\mathrm{If}\:\mathrm{the}\:\mathrm{points}\:{D}\:\mathrm{and} \\ $$$${M}\:\mathrm{are}\:\mathrm{represented}\:\mathrm{by}\:\mathrm{the}\:\mathrm{complex}\:\mathrm{numbers}\:\mathrm{1}+{i}\:\mathrm{and} \\ $$$$\mathrm{2}−{i},\:\mathrm{respectively},\:\mathrm{then}\:{A}\:\mathrm{is}\:\mathrm{represented}\:\mathrm{by} \\ $$$$\left(\mathrm{A}\right)\:\mathrm{3}−{i}/\mathrm{2}\:\:\:\:\:\:\:\:\:\left(\mathrm{B}\right)\:\mathrm{3}+{i}/\mathrm{2}\:\:\:\:\:\:\:\:\:\left(\mathrm{C}\right)\:\mathrm{1}+\mathrm{3}{i}/\mathrm{2}\:\:\:\:\:\:\:\:\:\left(\mathrm{D}\right)\:\mathrm{1}−\mathrm{3}{i}/\mathrm{2} \\ $$ Answered by mr W last…
Question Number 140198 by EnterUsername last updated on 05/May/21 $$\mathrm{Let}\:{a}>\mathrm{0}\:\mathrm{and}\:\mid{z}+\left(\mathrm{1}/{z}\right)\mid={a}\:\left({z}\neq\mathrm{0}\:\mathrm{is}\:\mathrm{a}\:\mathrm{complex}\:\mathrm{number}\right). \\ $$$$\mathrm{Then}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{and}\:\mathrm{minimum}\:\mathrm{values}\:\mathrm{of}\:\mid{z}\mid\:\mathrm{are} \\ $$$$\left(\mathrm{A}\right)\:\frac{{a}+\sqrt{{a}^{\mathrm{2}} +\mathrm{4}}}{\mathrm{2}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{B}\right)\:\frac{\mathrm{2}{a}+\sqrt{{a}^{\mathrm{2}} +\mathrm{4}}}{\mathrm{2}} \\ $$$$\left(\mathrm{C}\right)\:\frac{\sqrt{{a}^{\mathrm{2}} +\mathrm{4}}−{a}}{\mathrm{2}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{D}\right)\:\frac{\sqrt{{a}^{\mathrm{2}} +\mathrm{4}}−\mathrm{2}{a}}{\mathrm{2}} \\ $$ Answered by Dwaipayan…
Question Number 140113 by EnterUsername last updated on 04/May/21 $$\mathrm{Let}\:{z}_{\mathrm{1}} =\mathrm{1}+{i},\:{z}_{\mathrm{2}} =−\mathrm{1}−{i}\:\mathrm{and}\:{z}_{\mathrm{3}} \:\mathrm{be}\:\mathrm{complex}\:\mathrm{numbers} \\ $$$$\mathrm{such}\:\mathrm{that}\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} \:\mathrm{and}\:{z}_{\mathrm{3}} \:\mathrm{form}\:\mathrm{an}\:\mathrm{equilateral}\:\mathrm{triangle}. \\ $$$$\mathrm{Then}\:{z}_{\mathrm{3}} \:\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$$$\left(\mathrm{A}\right)\:\sqrt{\mathrm{3}}\left(\mathrm{1}+{i}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{B}\right)\:\sqrt{\mathrm{3}}\left(\mathrm{1}−{i}\right) \\ $$$$\left(\mathrm{C}\right)\:\sqrt{\mathrm{3}}\left({i}−\mathrm{1}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{D}\right)\:\sqrt{\mathrm{3}}\left(−\mathrm{1}−{i}\right)…
Question Number 139700 by EnterUsername last updated on 30/Apr/21 $$\mathrm{If}\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} \:\mathrm{and}\:{z}_{\mathrm{3}} \:\mathrm{are}\:\mathrm{distinct}\:\mathrm{complex}\:\mathrm{numbers}\:\mathrm{such} \\ $$$$\mathrm{that}\:\mid{z}_{\mathrm{1}} \mid=\mid{z}_{\mathrm{2}} \mid=\mid{z}_{\mathrm{3}} \mid=\mathrm{1}\:\mathrm{and} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{z}_{\mathrm{1}} ^{\mathrm{2}} }{{z}_{\mathrm{2}} {z}_{\mathrm{3}} }+\frac{{z}_{\mathrm{2}} ^{\mathrm{2}}…
Question Number 139641 by EnterUsername last updated on 30/Apr/21 $$\mathrm{Let}\:{a},\:{b}\:\mathrm{be}\:\mathrm{non}-\mathrm{zero}\:\mathrm{complex}\:\mathrm{numbers}\:\mathrm{and}\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} \:\mathrm{be} \\ $$$$\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation}\:{z}^{\mathrm{2}} +{az}+{b}=\mathrm{0}.\:\mathrm{If}\:\mathrm{there}\:\mathrm{exists} \\ $$$$\lambda\geqslant\mathrm{4}\:\mathrm{such}\:\mathrm{that}\:{a}^{\mathrm{2}} =\lambda{b},\:\mathrm{then}\:\mathrm{the}\:\mathrm{points}\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} \:\mathrm{and}\:\mathrm{the} \\ $$$$\mathrm{origin} \\ $$$$\left(\mathrm{A}\right)\:\mathrm{form}\:\mathrm{an}\:\mathrm{equilateral}\:\mathrm{triangle} \\…
Question Number 8301 by Rasheed Soomro last updated on 06/Oct/16 $$\mathrm{Is}\:\:\left\{\:\left(\omega+\mathrm{i}\right)^{\mathrm{0}} ,\:\left(\omega+\mathrm{i}\right)^{\mathrm{1}} ,\:\left(\omega+\mathrm{i}\right)^{\mathrm{2}} ,\:….,\:\left(\omega+\mathrm{i}\right)^{\mathrm{n}} \:\right\} \\ $$$$\mathrm{cyclic}\:\mathrm{for}\:\mathrm{any}\:\mathrm{value}\:\mathrm{of}\:\mathrm{n}? \\ $$$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{smallest}\:\mathrm{such}\:\mathrm{n}\:\mathrm{if}\:\mathrm{it}\:\mathrm{exists}. \\ $$$$\omega\:\mathrm{is}\:\mathrm{a}\:\mathrm{complex}\:\mathrm{cuberoot}\:\mathrm{of}\:\mathrm{unity}\:\mathrm{and} \\ $$$$\mathrm{i}=\sqrt{−\mathrm{1}} \\ $$…
Question Number 139192 by EnterUsername last updated on 23/Apr/21 $$\mathrm{If}\:{z}_{\mathrm{1}\:} \:\mathrm{and}\:{z}_{\mathrm{2}} \:\mathrm{are}\:\mathrm{complex}\:{n}\mathrm{th}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{unity}\:\mathrm{which}\:\mathrm{sub}- \\ $$$$\mathrm{tend}\:\mathrm{right}\:\mathrm{angle}\:\mathrm{at}\:\mathrm{the}\:\mathrm{origin},\:\mathrm{then}\:{n}\:\mathrm{must}\:\mathrm{be}\:\mathrm{of}\:\mathrm{the}\:\mathrm{form} \\ $$$$\left(\mathrm{A}\right)\:\mathrm{4K}+\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{B}\right)\:\mathrm{4K}+\mathrm{2} \\ $$$$\left(\mathrm{C}\right)\:\mathrm{4K}+\mathrm{3}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{D}\right)\:\mathrm{4K} \\ $$ Answered by mr W last…