Menu Close

Search Results for: complex

If-z-1-and-z-2-are-complex-numbers-such-that-z-2-1-and-z-1-2z-2-2-z-1-z-2-1-then-z-1-is-equal-to-

Question Number 140442 by EnterUsername last updated on 07/May/21 $$\mathrm{If}\:{z}_{\mathrm{1}} \:\mathrm{and}\:{z}_{\mathrm{2}} \:\mathrm{are}\:\mathrm{complex}\:\mathrm{numbers}\:\mathrm{such}\:\mathrm{that}\:\mid{z}_{\mathrm{2}} \mid\neq\mathrm{1}\:\mathrm{and} \\ $$$$\mid\left({z}_{\mathrm{1}} −\mathrm{2}{z}_{\mathrm{2}} \right)/\left(\mathrm{2}−{z}_{\mathrm{1}} \bar {{z}}_{\mathrm{2}} \right)\mid=\mathrm{1},\:\mathrm{then}\:\mid{z}_{\mathrm{1}} \mid\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:\_\_\_\_\_. \\ $$ Answered by…

Passage-If-z-1-z-2-and-z-3-are-three-complex-numbers-representing-the-points-A-B-and-C-respectively-in-the-Argands-plane-and-BAC-then-z-3-z-1-z-2-z-1-AC-

Question Number 140260 by EnterUsername last updated on 05/May/21 $$\mathrm{Passage}:\:\mathrm{If}\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} \:\mathrm{and}\:{z}_{\mathrm{3}} \:\mathrm{are}\:\mathrm{three}\:\mathrm{complex}\:\mathrm{numbers} \\ $$$$\mathrm{representing}\:\mathrm{the}\:\mathrm{points}\:{A},\:{B}\:\mathrm{and}\:{C},\:\mathrm{respectively},\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{Argands}\:\mathrm{plane}\:\mathrm{and}\:\angle{BAC}=\alpha,\:\mathrm{then} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{z}_{\mathrm{3}} −{z}_{\mathrm{1}} }{{z}_{\mathrm{2}} −{z}_{\mathrm{1}} }=\left(\frac{{AC}}{{AB}}\right)\left(\mathrm{cos}\alpha+{i}\mathrm{sin}\alpha\right) \\ $$$$\left({i}\right)\:\mathrm{If}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation}…

Let-p-and-q-be-positive-integers-having-no-positive-common-divisors-except-unity-Let-z-1-z-2-z-q-be-the-q-values-of-z-p-q-where-z-is-a-fixed-complex-number-Then-the-product-z-1-z-2-z

Question Number 140248 by EnterUsername last updated on 05/May/21 $$\mathrm{Let}\:{p}\:\mathrm{and}\:{q}\:\mathrm{be}\:\mathrm{positive}\:\mathrm{integers}\:\mathrm{having}\:\mathrm{no}\:\mathrm{positive} \\ $$$$\mathrm{common}\:\mathrm{divisors}\:\mathrm{except}\:\mathrm{unity}.\:\mathrm{Let}\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} ,…,\:{z}_{{q}} \:\mathrm{be}\:\mathrm{the} \\ $$$${q}\:\mathrm{values}\:\mathrm{of}\:{z}^{{p}/{q}} ,\:\mathrm{where}\:{z}\:\mathrm{is}\:\mathrm{a}\:\mathrm{fixed}\:\mathrm{complex}\:\mathrm{number}.\:\mathrm{Then} \\ $$$$\mathrm{the}\:\mathrm{product}\:{z}_{\mathrm{1}} {z}_{\mathrm{2}} …{z}_{{q}} \:\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$$$\left(\mathrm{A}\right)\:{z}^{{p}}…

ABCD-is-a-rhombus-Its-diagonals-AC-and-BD-inter-sect-at-M-and-satisfy-BD-2AC-If-the-points-D-and-M-are-represented-by-the-complex-numbers-1-i-and-2-i-respectively-then-A-is-represented-by-A-3-i

Question Number 140205 by EnterUsername last updated on 05/May/21 $${ABCD}\:\mathrm{is}\:\mathrm{a}\:\mathrm{rhombus}.\:\mathrm{Its}\:\mathrm{diagonals}\:{AC}\:\mathrm{and}\:{BD}\:\mathrm{inter}- \\ $$$$\mathrm{sect}\:\mathrm{at}\:{M}\:\mathrm{and}\:\mathrm{satisfy}\:{BD}=\mathrm{2}{AC}.\:\mathrm{If}\:\mathrm{the}\:\mathrm{points}\:{D}\:\mathrm{and} \\ $$$${M}\:\mathrm{are}\:\mathrm{represented}\:\mathrm{by}\:\mathrm{the}\:\mathrm{complex}\:\mathrm{numbers}\:\mathrm{1}+{i}\:\mathrm{and} \\ $$$$\mathrm{2}−{i},\:\mathrm{respectively},\:\mathrm{then}\:{A}\:\mathrm{is}\:\mathrm{represented}\:\mathrm{by} \\ $$$$\left(\mathrm{A}\right)\:\mathrm{3}−{i}/\mathrm{2}\:\:\:\:\:\:\:\:\:\left(\mathrm{B}\right)\:\mathrm{3}+{i}/\mathrm{2}\:\:\:\:\:\:\:\:\:\left(\mathrm{C}\right)\:\mathrm{1}+\mathrm{3}{i}/\mathrm{2}\:\:\:\:\:\:\:\:\:\left(\mathrm{D}\right)\:\mathrm{1}−\mathrm{3}{i}/\mathrm{2} \\ $$ Answered by mr W last…

Let-a-gt-0-and-z-1-z-a-z-0-is-a-complex-number-Then-the-maximum-and-minimum-values-of-z-are-A-a-a-2-4-2-B-2a-a-2-4-2-C-a-2-4-

Question Number 140198 by EnterUsername last updated on 05/May/21 $$\mathrm{Let}\:{a}>\mathrm{0}\:\mathrm{and}\:\mid{z}+\left(\mathrm{1}/{z}\right)\mid={a}\:\left({z}\neq\mathrm{0}\:\mathrm{is}\:\mathrm{a}\:\mathrm{complex}\:\mathrm{number}\right). \\ $$$$\mathrm{Then}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{and}\:\mathrm{minimum}\:\mathrm{values}\:\mathrm{of}\:\mid{z}\mid\:\mathrm{are} \\ $$$$\left(\mathrm{A}\right)\:\frac{{a}+\sqrt{{a}^{\mathrm{2}} +\mathrm{4}}}{\mathrm{2}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{B}\right)\:\frac{\mathrm{2}{a}+\sqrt{{a}^{\mathrm{2}} +\mathrm{4}}}{\mathrm{2}} \\ $$$$\left(\mathrm{C}\right)\:\frac{\sqrt{{a}^{\mathrm{2}} +\mathrm{4}}−{a}}{\mathrm{2}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{D}\right)\:\frac{\sqrt{{a}^{\mathrm{2}} +\mathrm{4}}−\mathrm{2}{a}}{\mathrm{2}} \\ $$ Answered by Dwaipayan…

Let-z-1-1-i-z-2-1-i-and-z-3-be-complex-numbers-such-that-z-1-z-2-and-z-3-form-an-equilateral-triangle-Then-z-3-is-equal-to-A-3-1-i-B-3-1-i-C-3

Question Number 140113 by EnterUsername last updated on 04/May/21 $$\mathrm{Let}\:{z}_{\mathrm{1}} =\mathrm{1}+{i},\:{z}_{\mathrm{2}} =−\mathrm{1}−{i}\:\mathrm{and}\:{z}_{\mathrm{3}} \:\mathrm{be}\:\mathrm{complex}\:\mathrm{numbers} \\ $$$$\mathrm{such}\:\mathrm{that}\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} \:\mathrm{and}\:{z}_{\mathrm{3}} \:\mathrm{form}\:\mathrm{an}\:\mathrm{equilateral}\:\mathrm{triangle}. \\ $$$$\mathrm{Then}\:{z}_{\mathrm{3}} \:\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$$$\left(\mathrm{A}\right)\:\sqrt{\mathrm{3}}\left(\mathrm{1}+{i}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{B}\right)\:\sqrt{\mathrm{3}}\left(\mathrm{1}−{i}\right) \\ $$$$\left(\mathrm{C}\right)\:\sqrt{\mathrm{3}}\left({i}−\mathrm{1}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{D}\right)\:\sqrt{\mathrm{3}}\left(−\mathrm{1}−{i}\right)…

If-z-1-z-2-and-z-3-are-distinct-complex-numbers-such-that-z-1-z-2-z-3-1-and-z-1-2-z-2-z-3-z-2-2-z-3-z-1-z-3-2-z-1-z-2-1-then-the-value-o

Question Number 139700 by EnterUsername last updated on 30/Apr/21 $$\mathrm{If}\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} \:\mathrm{and}\:{z}_{\mathrm{3}} \:\mathrm{are}\:\mathrm{distinct}\:\mathrm{complex}\:\mathrm{numbers}\:\mathrm{such} \\ $$$$\mathrm{that}\:\mid{z}_{\mathrm{1}} \mid=\mid{z}_{\mathrm{2}} \mid=\mid{z}_{\mathrm{3}} \mid=\mathrm{1}\:\mathrm{and} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{z}_{\mathrm{1}} ^{\mathrm{2}} }{{z}_{\mathrm{2}} {z}_{\mathrm{3}} }+\frac{{z}_{\mathrm{2}} ^{\mathrm{2}}…

Let-a-b-be-non-zero-complex-numbers-and-z-1-z-2-be-the-roots-of-the-equation-z-2-az-b-0-If-there-exists-4-such-that-a-2-b-then-the-points-z-1-z-2-and-the-origin-A-form-an-equilateral-t

Question Number 139641 by EnterUsername last updated on 30/Apr/21 $$\mathrm{Let}\:{a},\:{b}\:\mathrm{be}\:\mathrm{non}-\mathrm{zero}\:\mathrm{complex}\:\mathrm{numbers}\:\mathrm{and}\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} \:\mathrm{be} \\ $$$$\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation}\:{z}^{\mathrm{2}} +{az}+{b}=\mathrm{0}.\:\mathrm{If}\:\mathrm{there}\:\mathrm{exists} \\ $$$$\lambda\geqslant\mathrm{4}\:\mathrm{such}\:\mathrm{that}\:{a}^{\mathrm{2}} =\lambda{b},\:\mathrm{then}\:\mathrm{the}\:\mathrm{points}\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} \:\mathrm{and}\:\mathrm{the} \\ $$$$\mathrm{origin} \\ $$$$\left(\mathrm{A}\right)\:\mathrm{form}\:\mathrm{an}\:\mathrm{equilateral}\:\mathrm{triangle} \\…

Is-i-0-i-1-i-2-i-n-cyclic-for-any-value-of-n-Determine-the-smallest-such-n-if-it-exists-is-a-complex-cuberoot-of-unity-and-i-1-

Question Number 8301 by Rasheed Soomro last updated on 06/Oct/16 $$\mathrm{Is}\:\:\left\{\:\left(\omega+\mathrm{i}\right)^{\mathrm{0}} ,\:\left(\omega+\mathrm{i}\right)^{\mathrm{1}} ,\:\left(\omega+\mathrm{i}\right)^{\mathrm{2}} ,\:….,\:\left(\omega+\mathrm{i}\right)^{\mathrm{n}} \:\right\} \\ $$$$\mathrm{cyclic}\:\mathrm{for}\:\mathrm{any}\:\mathrm{value}\:\mathrm{of}\:\mathrm{n}? \\ $$$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{smallest}\:\mathrm{such}\:\mathrm{n}\:\mathrm{if}\:\mathrm{it}\:\mathrm{exists}. \\ $$$$\omega\:\mathrm{is}\:\mathrm{a}\:\mathrm{complex}\:\mathrm{cuberoot}\:\mathrm{of}\:\mathrm{unity}\:\mathrm{and} \\ $$$$\mathrm{i}=\sqrt{−\mathrm{1}} \\ $$…

If-z-1-and-z-2-are-complex-nth-roots-of-unity-which-sub-tend-right-angle-at-the-origin-then-n-must-be-of-the-form-A-4K-1-B-4K-2-C-4K-3-D-4K-

Question Number 139192 by EnterUsername last updated on 23/Apr/21 $$\mathrm{If}\:{z}_{\mathrm{1}\:} \:\mathrm{and}\:{z}_{\mathrm{2}} \:\mathrm{are}\:\mathrm{complex}\:{n}\mathrm{th}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{unity}\:\mathrm{which}\:\mathrm{sub}- \\ $$$$\mathrm{tend}\:\mathrm{right}\:\mathrm{angle}\:\mathrm{at}\:\mathrm{the}\:\mathrm{origin},\:\mathrm{then}\:{n}\:\mathrm{must}\:\mathrm{be}\:\mathrm{of}\:\mathrm{the}\:\mathrm{form} \\ $$$$\left(\mathrm{A}\right)\:\mathrm{4K}+\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{B}\right)\:\mathrm{4K}+\mathrm{2} \\ $$$$\left(\mathrm{C}\right)\:\mathrm{4K}+\mathrm{3}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{D}\right)\:\mathrm{4K} \\ $$ Answered by mr W last…