Menu Close

Search Results for: complex

Let-z-1-1-i-z-2-1-i-and-z-3-be-complex-numbers-such-that-z-1-z-2-and-z-3-form-an-equilateral-triangle-Then-z-3-is-equal-to-A-3-1-i-B-3-1-i-C-3

Question Number 140113 by EnterUsername last updated on 04/May/21 Letz1=1+i,z2=1iandz3becomplexnumberssuchthatz1,z2andz3formanequilateraltriangle.Thenz3isequalto(A)3(1+i)(B)3(1i)$$\left(\mathrm{C}\right)\:\sqrt{\mathrm{3}}\left({i}−\mathrm{1}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{D}\right)\:\sqrt{\mathrm{3}}\left(−\mathrm{1}−{i}\right)…

Let-a-b-be-non-zero-complex-numbers-and-z-1-z-2-be-the-roots-of-the-equation-z-2-az-b-0-If-there-exists-4-such-that-a-2-b-then-the-points-z-1-z-2-and-the-origin-A-form-an-equilateral-t

Question Number 139641 by EnterUsername last updated on 30/Apr/21 Leta,bbenonzerocomplexnumbersandz1,z2betherootsoftheequationz2+az+b=0.Ifthereexistsλ4suchthata2=λb,thenthepointsz1,z2andtheorigin$$\left(\mathrm{A}\right)\:\mathrm{form}\:\mathrm{an}\:\mathrm{equilateral}\:\mathrm{triangle} \