Menu Close

Search Results for: complex

Could-you-help-me-with-references-in-complex-analysis-please-

Question Number 73582 by arkanmath7@gmail.com last updated on 13/Nov/19 $${Could}\:{you}\:{help}\:{me}\:{with}\:{references} \\ $$$${in}\:{complex}\:{analysis}\:{please}? \\ $$ Commented by mathmax by abdo last updated on 14/Nov/19 $${search}\:{vuibert}\:{and}\:{ellipse}\:{collection}…. \\…

Let-z-be-a-complex-number-If-z-1-z-1-and-arg-z-1-z-1-pi-4-Then-z-is-

Question Number 139118 by EnterUsername last updated on 22/Apr/21 $$\mathrm{Let}\:{z}\:\mathrm{be}\:\mathrm{a}\:\mathrm{complex}\:\mathrm{number}.\:\mathrm{If}\:\mid{z}+\mathrm{1}\mid=\mid{z}−\mathrm{1}\mid \\ $$$$\mathrm{and}\:\mathrm{arg}\left(\frac{{z}−\mathrm{1}}{{z}+\mathrm{1}}\right)=\frac{\pi}{\mathrm{4}}.\:\mathrm{Then}\:{z}\:\mathrm{is}\:?\: \\ $$ Answered by qaz last updated on 22/Apr/21 $$\mid{z}+\mathrm{1}\mid=\mid{z}−\mathrm{1}\mid \\ $$$$\Rightarrow{z}={a}+{bi}={bi} \\…

The-area-of-the-region-in-the-complex-plane-satisfying-the-inequality-log-cos-pi-6-z-2-5-4-z-2-4-lt-2-is-

Question Number 139057 by EnterUsername last updated on 21/Apr/21 $$\mathrm{The}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{region}\:\mathrm{in}\:\mathrm{the}\:\mathrm{complex}\:\mathrm{plane}\:\mathrm{satisfying} \\ $$$$\mathrm{the}\:\mathrm{inequality}\:\mathrm{log}_{\mathrm{cos}\left(\frac{\pi}{\mathrm{6}}\right)} \left[\frac{\mid\mathrm{z}−\mathrm{2}\mid+\mathrm{5}}{\mathrm{4}\mid\mathrm{z}−\mathrm{2}\mid−\mathrm{4}}\right]<\mathrm{2}\:\mathrm{is}\:? \\ $$ Answered by MJS_new last updated on 22/Apr/21 $$\mid{z}−\mathrm{2}\mid={x}\geqslant\mathrm{0} \\ $$$$\frac{\mathrm{ln}\:\frac{{x}+\mathrm{5}}{\mathrm{4}\left({x}−\mathrm{1}\right)}}{\mathrm{ln}\:\mathrm{cos}\:\frac{\pi}{\mathrm{6}}}<\mathrm{2}\:\Leftrightarrow\:\mathrm{ln}\:\frac{{x}+\mathrm{5}}{{x}−\mathrm{1}}\:>\mathrm{ln}\:\mathrm{3}…

1-z-n-1-z-n-where-z-is-a-complex-number-

Question Number 139052 by EnterUsername last updated on 21/Apr/21 $$\left(\mathrm{1}+\mathrm{z}\right)^{\mathrm{n}} =\left(\mathrm{1}−\mathrm{z}\right)^{\mathrm{n}} \\ $$$${where}\:{z}\:{is}\:{a}\:{complex}\:{number} \\ $$ Answered by mathmax by abdo last updated on 21/Apr/21 $$\mathrm{z}=−\mathrm{1}\:\mathrm{is}\:\mathrm{not}\:\mathrm{solution}\:\:\mathrm{let}\:\mathrm{z}\neq−\mathrm{1}…

Let-a-and-b-be-complex-numbers-representing-the-points-A-and-B-respectively-in-the-complex-plane-If-a-b-b-a-1-and-O-is-the-origin-Then-OAB-is-

Question Number 139055 by EnterUsername last updated on 21/Apr/21 $$\mathrm{Let}\:\mathrm{a}\:\mathrm{and}\:\mathrm{b}\:\mathrm{be}\:\mathrm{complex}\:\mathrm{numbers}\:\mathrm{representing}\:\mathrm{the}\:\mathrm{points} \\ $$$$\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{respectively}\:\mathrm{in}\:\mathrm{the}\:\mathrm{complex}\:\mathrm{plane}. \\ $$$$\mathrm{If}\:\frac{\mathrm{a}}{\mathrm{b}}+\frac{\mathrm{b}}{\mathrm{a}}=\mathrm{1}\:\mathrm{and}\:\mathrm{O}\:\mathrm{is}\:\mathrm{the}\:\mathrm{origin}.\:\mathrm{Then}\:\Delta\mathrm{OAB}\:\mathrm{is}\:? \\ $$ Answered by MJS_new last updated on 22/Apr/21 $$\frac{{a}}{{b}}+\frac{{b}}{{a}}=\mathrm{1}\:\Rightarrow\:{b}={a}\left(\frac{\mathrm{1}}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}\right) \\…

Show-that-the-set-of-complex-numbers-C-under-the-usual-addition-and-multiplication-form-a-field-C-

Question Number 138983 by physicstutes last updated on 20/Apr/21 $$\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{complex}\:\mathrm{numbers}\:\mathbb{C}\:\mathrm{under}\:\mathrm{the}\:\mathrm{usual} \\ $$$$\mathrm{addition}\:\mathrm{and}\:\mathrm{multiplication}\:\mathrm{form}\:\mathrm{a}\:\mathrm{field}. \\ $$$$\left(\mathbb{C},+,×\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Given-that-Z-and-H-are-complex-number-obtain-the-real-and-imaginary-of-Z-H-

Question Number 7748 by Tawakalitu. last updated on 13/Sep/16 $${Given}\:{that}\:{Z}\:{and}\:{H}\:{are}\:{complex}\:{number}.\: \\ $$$${obtain}\:{the}\:{real}\:{and}\:{imaginary}\:{of}\:{Z}^{{H}} \\ $$ Answered by Yozzia last updated on 13/Sep/16 $${Let}\:{Z}={re}^{{i}\theta} ,\:{H}={c}+{di}\:\:\left({r},\theta,{c},{d}\in\mathbb{R},\:{r}>\mathrm{0},\:{i}=\sqrt{−\mathrm{1}}\right). \\ $$$${Z}^{{H}}…

x-and-y-are-reals-or-complex-let-put-x-0-1-x-1-x-x-2-x-x-1-x-n-x-x-1-x-2-x-n-1-prove-that-x-y-n-k-0-n-C-n-k-x-n-k-y-k-

Question Number 73027 by mathmax by abdo last updated on 05/Nov/19 $${x}\:{and}\:{y}\:{are}\:{reals}\left({or}\:{complex}\right)\:{let}\:{put}\:{x}^{\left(\mathrm{0}\right)} =\mathrm{1}\:,{x}^{\left(\mathrm{1}\right)} ={x} \\ $$$${x}^{\left(\mathrm{2}\right)} ={x}\left({x}−\mathrm{1}\right)…..{x}^{\left({n}\right)} ={x}\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)…\left({x}−{n}+\mathrm{1}\right){prove}\:{that} \\ $$$$\left({x}+{y}\right)^{\left({n}\right)} =\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:\:{x}^{\left({n}−{k}\right)}…