Menu Close

Search Results for: complex

If-and-are-different-complex-numbers-with-1-then-1-

Question Number 1331 by a@b.c last updated on 23/Jul/15 $$\mathrm{If}\:\alpha\:\mathrm{and}\:\beta\:\mathrm{are}\:\mathrm{different}\:\mathrm{complex}\:\mathrm{numbers} \\ $$$$\mathrm{with}\:\mid\beta\mid=\mathrm{1}\:\mathrm{then}\:\mid\frac{\beta−\alpha}{\mathrm{1}−\alpha\beta}\mid=? \\ $$ Commented by 123456 last updated on 23/Jul/15 $$\mid\alpha+\beta\mid\leqslant\mid\alpha\mid+\mid\beta\mid \\ $$$$\mid\beta−\alpha\mid\leqslant\mid\beta\mid+\mid\alpha\mid \\…

Rasheed-Ahmad-Rasheed-Soomro-For-f-x-where-x-and-f-x-both-are-real-the-x-f-x-can-be-plotted-as-a-point-easily-Now-consider-F-X-where-X-and-F-X-are-complex-numbers-How-can-X-F-X-be-plo

Question Number 1239 by Rasheed Ahmad last updated on 17/Jul/15 $${Rasheed}\:{Ahmad}\:\left({Rasheed}\:{Soomro}\right) \\ $$$$\bullet\mathrm{For}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{where}\:\mathrm{x}\:\mathrm{and}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{both}\:{are} \\ $$$$\mathrm{real}\:\mathrm{the}\:\left(\mathrm{x},{f}\left({x}\right)\right)\:{can}\:{be}\:{plotted}\:{as} \\ $$$${a}\:{point}\:{easily}.\:\bullet{Now}\:{consider}\:{F}\left({X}\right) \\ $$$${where}\:{X}\:{and}\:{F}\left({X}\right)\:{are}\:{complex}\: \\ $$$${numbers}.\:{How}\:{can}\:\left({X},{F}\left({X}\right)\right)\:{be} \\ $$$${plotted}?\:{For}\:{a}\:{particular}\:{example}:\:\left(\mathrm{3}+\mathrm{2}{i},\mathrm{4}−\mathrm{5}{i}\right) \\ $$$${how}\:{can}\:{be}\:{plotted}?…

show-that-for-a-given-complex-number-z-z-n-r-n-cosn-isinn-

Question Number 66421 by Rio Michael last updated on 14/Aug/19 $${show}\:{that}\:{for}\:{a}\:{given}\:{complex}\:{number}\:{z} \\ $$$$\:{z}^{{n}} \:=\:{r}^{{n}} \:\left({cosn}\theta\:+\:{isinn}\theta\right)\: \\ $$ Answered by MJS last updated on 14/Aug/19 $${z}={r}\left(\mathrm{cos}\:\theta\:+\mathrm{i}\:\mathrm{sin}\:\theta\right)={r}\mathrm{e}^{\mathrm{i}\theta}…

Question-213803

Question Number 213803 by muallimRiyoziyot last updated on 17/Nov/24 Commented by Frix last updated on 17/Nov/24 $$\mathrm{There}\:\mathrm{is}\:\mathrm{a}\:\mathrm{pair}\:\mathrm{of}\:\mathrm{complex}\:\mathrm{solutions}\:\mathrm{but}\:\mathrm{the} \\ $$$$\mathrm{exact}\:\mathrm{form}\:\mathrm{is}\:\mathrm{not}\:\mathrm{useable}. \\ $$$${x}\approx\mathrm{1}.\mathrm{32848492}\pm.\mathrm{570204126i} \\ $$ Commented by…

Resoudre-le-systeme-d-equations-x-y-xy-84-x-2-y-2-25-

Question Number 213721 by a.lgnaoui last updated on 14/Nov/24 $$\boldsymbol{\mathrm{Resoudre}}\:\boldsymbol{\mathrm{le}}\:\boldsymbol{\mathrm{systeme}}\:\boldsymbol{\mathrm{d}}'\:\boldsymbol{\mathrm{equations}}: \\ $$$$\begin{cases}{\left(\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}\right)\boldsymbol{\mathrm{xy}}=\mathrm{84}}\\{\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{y}}^{\mathrm{2}} \:\:\:\:\:\:=\mathrm{25}}\end{cases} \\ $$ Answered by golsendro last updated on 14/Nov/24 $$\:\:\:\left(\mathrm{x}+\mathrm{y}\right)^{\mathrm{2}} −\mathrm{2xy}=\:\mathrm{x}^{\mathrm{2}}…

Question-212673

Question Number 212673 by golsendro last updated on 21/Oct/24 $$\:\:\:\: \\ $$ Answered by Frix last updated on 21/Oct/24 $$\sqrt{\mathrm{2}{x}+\mathrm{3}}={x}^{\mathrm{2}} −{x}−\mathrm{3} \\ $$$$\mathrm{Squaring}\:\&\:\mathrm{transforming} \\ $$$$\:\:\:\:\:\left[\mathrm{introduces}\:\mathrm{false}\:\mathrm{solutions}!\right]…

if-lim-x-0-f-x-lim-x-0-g-x-0-when-do-not-use-f-x-to-replace-g-x-

Question Number 211567 by liuxinnan last updated on 13/Sep/24 $${if}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}{f}\left({x}\right)=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}{g}\left({x}\right)=\mathrm{0} \\ $$$${when}\:{do}\:{not}\:{use}\:{f}\left({x}\right)\:{to}\:\:{replace}\:{g}\left({x}\right)\:\:\: \\ $$ Commented by MrGaster last updated on 13/Sep/24 $$\mathrm{1}.\mathrm{when}\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}{f}\left({x}\right)=\underset{{x}\rightarrow\mathrm{0}}…

prove-0-arctan-x-2-2-x-2-1-x-2-2-dx-pi-2-12-

Question Number 210820 by Ghisom last updated on 19/Aug/24 $$\mathrm{prove} \\ $$$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\:\frac{\mathrm{arctan}\:\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}}\:{dx}=\frac{\pi^{\mathrm{2}} }{\mathrm{12}} \\ $$ Answered by BHOOPENDRA last updated…

Question-209424

Question Number 209424 by Tawa11 last updated on 09/Jul/24 Commented by Tawa11 last updated on 09/Jul/24 $$\mathrm{In}\:\mathrm{this}\:\mathrm{kind}\:\mathrm{of}\:\mathrm{probability},\:\mathrm{is}\:\mathrm{the}\:\mathrm{formular}. \\ $$$$\mathrm{p}\left(\mathrm{x}\:=\:\mathrm{r}\right)\:\:=\:\overset{\mathrm{n}} {\:}\mathrm{C}_{\mathrm{r}} \:\mathrm{p}^{\mathrm{r}} \:\mathrm{q}^{\mathrm{n}\:−\:\mathrm{r}} \\ $$$$\mathrm{or} \\…