Menu Close

Search Results for: complex

Prove-that-Sgn-0-0-

Question Number 207832 by Davidtim last updated on 28/May/24 $${Prove}\:{that}\:{Sgn}\left(\mathrm{0}\right)=\mathrm{0} \\ $$ Commented by Davidtim last updated on 28/May/24 $${help}\:{me} \\ $$ Answered by Frix…

x-2-x-6y-y-2-y-6x-x-y-

Question Number 207092 by hardmath last updated on 06/May/24 $$\begin{cases}{\mathrm{x}^{\mathrm{2}} \:=\:\mathrm{x}\:−\:\mathrm{6y}}\\{\mathrm{y}^{\mathrm{2}} \:=\:\mathrm{y}\:−\:\mathrm{6x}}\end{cases}\:\:\:\:\:\Rightarrow\:\:\:\:\mathrm{x}\:+\:\mathrm{y}\:=\:? \\ $$ Answered by A5T last updated on 06/May/24 $${x}^{\mathrm{2}} −{y}^{\mathrm{2}} ={x}−{y}−\mathrm{6}{y}+\mathrm{6}{x}=\mathrm{7}{x}−\mathrm{7}{y} \\…

Question-206129

Question Number 206129 by hardmath last updated on 07/Apr/24 Answered by MaruMaru last updated on 07/Apr/24 $${constant}\:\mathcal{C}\:??? \\ $$$${is}\:{it}\:{potter}\:{const}??? \\ $$$$ \\ $$https://ko.m.wikipedia.org/wiki/%ED%8F%AC%ED%84%B0_%EC%83%81%EC%88%98 Commented by…

For-what-value-of-k-can-be-expression-x-3-kx-2-7x-6-be-resolved-into-three-linear-factors-a-0-b-1-c-2-d-3-

Question Number 205018 by BaliramKumar last updated on 06/Mar/24 $$\mathrm{For}\:\mathrm{what}\:\mathrm{value}\:\mathrm{of}\:\:'\mathrm{k}'\:\mathrm{can}\:\mathrm{be}\:\mathrm{expression}\:{x}^{\mathrm{3}} \:+\:{kx}^{\mathrm{2}} \:−\mathrm{7}{x}\:+\mathrm{6}\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\mathrm{be}\:\mathrm{resolved}\:\mathrm{into}\:\mathrm{three}\:\mathrm{linear}\:\mathrm{factors}? \\ $$$$\left(\mathrm{a}\right)\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{b}\right)\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{c}\right)\:\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{d}\right)\:\mathrm{3} \\ $$ Commented by Rasheed.Sindhi last updated on 06/Mar/24…

Question-204991

Question Number 204991 by tigrecomplexe last updated on 04/Mar/24 Commented by tigrecomplexe last updated on 05/Mar/24 $${sommeone}\:{can}\:{put}\:{hand}\:{here}\:{please}\:? \\ $$ Answered by witcher3 last updated on…

Evaluate-sinx-x-4-x-2-1-dx-I-need-full-detailed-explanation-thank-you-in-advance-

Question Number 204804 by Mastermind last updated on 27/Feb/24 $$\mathrm{Evaluate}\:\int\frac{\mathrm{sinx}}{\mathrm{x}^{\mathrm{4}} +\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\mathrm{dx} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{I}\:\mathrm{need}\:\mathrm{full}\:\mathrm{detailed}\:\mathrm{explanation},\:\mathrm{thank}\:\mathrm{you}\:\mathrm{in} \\ $$$$\mathrm{advance}. \\ $$ Commented by TonyCWX08…

Question-203742

Question Number 203742 by Calculusboy last updated on 27/Jan/24 Answered by mr W last updated on 27/Jan/24 $${x}^{\mathrm{2024}} +{x}^{\mathrm{2024}} −\mathrm{2024}×\frac{\mathrm{1}}{\mathrm{4}}{x}^{\mathrm{2023}} +…=\mathrm{0} \\ $$$$\mathrm{2}{x}^{\mathrm{2024}} −\mathrm{506}{x}^{\mathrm{2023}} +…=\mathrm{0}…

Suggested-solution-method-to-question-203502-ze-z-1-Obviously-the-only-real-solution-is-z-W-1-567143290-z-a-bi-b-0-a-bi-e-a-bi-1-a-bi-cos-b-isin-b-e-a-1-e-a-acos-b-bsin-b-e-a-asin-b-

Question Number 203570 by Frix last updated on 22/Jan/24 $$\mathrm{Suggested}\:\mathrm{solution}\:\mathrm{method}\:\mathrm{to} \\ $$$$\mathrm{question}\:\mathrm{203502} \\ $$$$ \\ $$$${z}\mathrm{e}^{{z}} =\mathrm{1} \\ $$$$\mathrm{Obviously}\:\mathrm{the}\:\mathrm{only}\:\mathrm{real}\:\mathrm{solution}\:\mathrm{is} \\ $$$${z}={W}\left(\mathrm{1}\right)\approx.\mathrm{567143290} \\ $$$$ \\ $$$${z}={a}+{b}\mathrm{i}\wedge{b}\neq\mathrm{0}…

ze-z-e-Obviously-z-1-Now-find-at-least-one-solution-for-z-C-

Question Number 203502 by Frix last updated on 20/Jan/24 $${z}\mathrm{e}^{{z}} =\mathrm{e} \\ $$$$\mathrm{Obviously}\:{z}=\mathrm{1} \\ $$$$\mathrm{Now}\:\mathrm{find}\:\mathrm{at}\:\mathrm{least}\:\mathrm{one}\:\mathrm{solution}\:\mathrm{for}\:{z}\in\mathbb{C} \\ $$ Commented by Frix last updated on 22/Jan/24 $$\mathrm{See}\:\mathrm{question}\:\mathrm{203570}…

Question-202500

Question Number 202500 by Calculusboy last updated on 28/Dec/23 Answered by Frix last updated on 28/Dec/23 $$\mathrm{Obviously}\:{x}=\mathrm{1} \\ $$$$\sqrt[{\mathrm{2015}}]{\mathrm{1}+\mathrm{3}−\mathrm{3}}+\sqrt[{\mathrm{2015}}]{−\mathrm{1}−\mathrm{3}+\mathrm{5}}=\mathrm{1}+\mathrm{1}=\mathrm{2} \\ $$ Answered by Rasheed.Sindhi last…