Question Number 63383 by minh2001 last updated on 03/Jul/19 $${solve}\:{this}\:{equation}\:{in}\:{all}\: \\ $$$${part}\:{of}\:{complex}\:{number}: \\ $$$$\sqrt{\left({x}^{\mathrm{9}} −\mathrm{3}{x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}−\mathrm{6}\right)+\mathrm{4}}=\left({x}^{\mathrm{9}} −\mathrm{3}{x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}−\mathrm{6}\right)−\mathrm{16} \\ $$ Commented by MJS last updated…
Search Results for: complex
Question Number 128459 by SLVR last updated on 07/Jan/21 $${For}\:{any}\:{complex}\:{number}\:{z},{z}^{{n}} =\bar {{z}}\:{has}\:\left({n}+\mathrm{2}\right)\:{solutions}\:{How}??? \\ $$ Answered by mr W last updated on 10/Jan/21 $${let}\:{z}={r}\left(\mathrm{cos}\:\theta+{i}\:\mathrm{sin}\:\theta\right)={re}^{{i}\theta} \\ $$$${z}^{{n}}…
Question Number 127537 by mohammad17 last updated on 30/Dec/20 $${if}\:{a}\:{group}\:{contains}\:{all}\:{of}\:{the}\:{points}\:{that}\: \\ $$$${you}\:{collect}\:{then}\:{its}\:{a}\:{closed}\:{group}\: \\ $$$$ \\ $$$${prove}\:{this}\:{in}\:{complex}\:{number}\:? \\ $$ Commented by mohammad17 last updated on 30/Dec/20…
Question Number 127261 by mohammad17 last updated on 28/Dec/20 $${for}\:{any}\:{complex}\:{number}\:{if}\:{im}\left({z}\right)>\mathrm{0} \\ $$$${then}\:{im}\left(\frac{\mathrm{1}}{{z}}\right)>\mathrm{0}\:\:\:\:{prove}\:{this}\:? \\ $$ Commented by mr W last updated on 28/Dec/20 $${wrong}! \\ $$$${if}\:{im}\left({z}\right)>\mathrm{0}\:{then}\:{im}\left(\frac{\mathrm{1}}{{z}}\right)<\mathrm{0}.…
Question Number 127224 by mnjuly1970 last updated on 28/Dec/20 $$\:\:…\:{calculus}\:\:\left({I}\right)\:−{complex}\:{analysis}… \\ $$$$\:\:\:\:{calculate}\:::\: \\ $$$$\:\:\Phi\:=\:\int_{\mathrm{0}} ^{\:\infty} \frac{{ln}\left({x}\right)}{{x}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{2}}\:{dx}=\frac{{ln}^{\mathrm{2}} \left(\mathrm{2}\right)}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\: \\ $$ Answered by mindispower…
Question Number 192160 by universe last updated on 10/May/23 $$\mathrm{if}\:\mathrm{x},\mathrm{y},\mathrm{z}\:\mathrm{are}\:\mathrm{three}\:\mathrm{distinct}\:\mathrm{complex}\:\mathrm{numbers} \\ $$$$\mathrm{such}\:\mathrm{that}\:\frac{\mathrm{x}}{\mathrm{y}−{z}}+\frac{\mathrm{y}}{\mathrm{z}−\mathrm{x}}+\frac{\mathrm{z}}{\mathrm{x}−\mathrm{y}}\:=\:\mathrm{0}\:\mathrm{then}\: \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\:\Sigma\:\frac{\mathrm{x}^{\mathrm{2}} }{\left(\mathrm{y}−\mathrm{z}\right)^{\mathrm{2}} } \\ $$ Commented by mehdee42 last updated on 09/May/23…
Question Number 126267 by mathocean1 last updated on 19/Dec/20 $${z}\neq\mathrm{0}\:{and}\:{z}\:{is}\:{complex}; \\ $$$${z}={x}+{iy}\:{with}\:{x};{y}\:\in\:\mathbb{R}^{\ast} . \\ $$$${Given}\:{these}\:{points}\:{with}\:{theirs} \\ $$$${affix}: \\ $$$$\mathrm{0}\left(\mathrm{0}+\mathrm{0}{i}\right);\:{N}\left({z}^{\mathrm{2}} −\mathrm{1}\right)\:{and}\:{P}\left(\frac{\mathrm{1}}{\mathrm{z}^{\mathrm{2}} }−\mathrm{1}\right) \\ $$$$\mathrm{1}.\:{Show}\:{that} \\ $$$$\left(\frac{\mathrm{1}}{{z}^{\mathrm{2}}…
Question Number 191786 by Mastermind last updated on 30/Apr/23 $$\mathrm{Ques}.\:\mathrm{1}\:\left(\mathrm{Metric}\:\mathrm{Space}\:\mathrm{Question}\right) \\ $$$$\:\:\:\:\:\:\:\:\mathrm{Let}\:\mathrm{X}\:=\:\rho_{\infty} \:\mathrm{be}\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{all}\: \\ $$$$\mathrm{bounded}\:\mathrm{sequences}\:\mathrm{of}\:\mathrm{complex}\: \\ $$$$\mathrm{numbers}.\:\mathrm{That}\:\mathrm{is}\:\mathrm{every}\:\mathrm{element}\:\mathrm{of} \\ $$$$\rho_{\infty} \:\mathrm{is}\:\mathrm{a}\:\mathrm{complex}\:\mathrm{sequence}\:\overset{−} {\mathrm{x}}=\left\{\overset{−} {\mathrm{x}}\right\}_{\mathrm{k}=\mathrm{1}} ^{\infty} \: \\…
Question Number 59935 by maxmathsup by imad last updated on 16/May/19 $${sir}\:{malwan}\:{you}\:{must}\:{revise}\:\:{analytical}\:{function}\:{and}\:{complex}\:{analysis}… \\ $$ Commented by malwaan last updated on 16/May/19 $$\mathrm{O}.\mathrm{K}.\:{Sir} \\ $$ Terms…
Question Number 125131 by Snail last updated on 03/Jun/21 $${Let}\:{a},{b},{c}\in\:{complex}\:{numbers}\:{such}\:{that}\:{the}\:{roots} \\ $$$${of}\:{the}\:{equation}\:{ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0}\:{have}\:{same}\:{modulus} \\ $$$${Prove}\:{that}\:{a}=\mathrm{0}\:{iff}\:{b}=\mathrm{0} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com