Menu Close

Search Results for: complex

calculate-z-x-2-dx-with-z-complex-

Question Number 124921 by mathmax by abdo last updated on 07/Dec/20 $$\mathrm{calculate}\:\int_{−\infty} ^{+\infty} \:\mathrm{z}^{−\mathrm{x}^{\mathrm{2}} } \mathrm{dx}\:\:\mathrm{with}\:\mathrm{z}\:\mathrm{complex} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Let-l-z-lz-m-0-be-a-straight-line-in-the-complex-plane-and-P-z-0-be-a-point-in-the-plane-Then-the-equation-of-the-line-passing-through-P-z-0-and-perpendicular-to-the-given-line-is-

Question Number 123886 by Ar Brandon last updated on 29/Nov/20 $$\mathrm{Let}\:\overset{−} {{l}z}+{l}\overset{−} {{z}}+{m}=\mathrm{0}\:\mathrm{be}\:\mathrm{a}\:\mathrm{straight}\:\mathrm{line}\:\mathrm{in}\:\mathrm{the}\:\mathrm{complex}\:\mathrm{plane} \\ $$$$\mathrm{and}\:{P}\left({z}_{\mathrm{0}} \right)\:\mathrm{be}\:\mathrm{a}\:\mathrm{point}\:\mathrm{in}\:\mathrm{the}\:\mathrm{plane}.\:\mathrm{Then}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{line}\:\mathrm{passing}\:\mathrm{through}\:{P}\left({z}_{\mathrm{0}} \right)\:\mathrm{and}\:\mathrm{perpendicular} \\ $$$$\mathrm{to}\:\mathrm{the}\:\mathrm{given}\:\mathrm{line}\:\mathrm{is}\:\_\_\_ \\ $$ Answered by…

once-sgain-it-s-boring-to-solve-questions-of-minor-complexity-we-don-t-have-to-we-do-it-to-help-unexperienced-people-to-grow-you-could-at-least-type-thanks-otherwise-you-might-be-ignored-after-

Question Number 58113 by MJS last updated on 17/Apr/19 $$\mathrm{once}\:\mathrm{sgain}:\:\mathrm{it}'\mathrm{s}\:\mathrm{boring}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{questions}\:\mathrm{of} \\ $$$$\mathrm{minor}\:\mathrm{complexity}.\:\mathrm{we}\:\mathrm{don}'\mathrm{t}\:\mathrm{have}\:\mathrm{to},\:\mathrm{we}\:\mathrm{do} \\ $$$$\mathrm{it}\:\mathrm{to}\:\mathrm{help}\:\mathrm{unexperienced}\:\mathrm{people}\:\mathrm{to}\:\mathrm{grow}. \\ $$$$\mathrm{you}\:\mathrm{could}\:\mathrm{at}\:\mathrm{least}\:\mathrm{type}\:“\mathrm{thanks}''.\:\mathrm{otherwise} \\ $$$$\mathrm{you}\:\mathrm{might}\:\mathrm{be}\:\mathrm{ignored}\:\mathrm{after}\:\mathrm{a}\:\mathrm{while}… \\ $$ Commented by mr W last…

Find-all-complex-number-z-that-satisfy-sinh-z-i-

Question Number 57719 by Joel578 last updated on 10/Apr/19 $$\mathrm{Find}\:\mathrm{all}\:\mathrm{complex}\:\mathrm{number}\:{z}\:\mathrm{that}\:\mathrm{satisfy} \\ $$$$\mathrm{sinh}\:{z}\:=\:{i} \\ $$ Answered by mr W last updated on 10/Apr/19 $$\mathrm{sinh}\:{z}=\frac{{e}^{{z}} −{e}^{−{z}} }{\mathrm{2}}={i}…

If-n-1-k-2-k-3-1-k-3-1-n-Solve-for-complex-numbees-z-4-3z-3-z-2-3z-1-0-

Question Number 188224 by Shrinava last updated on 26/Feb/23 $$\mathrm{If}\:\:\:\Omega\:=\:\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\:\left(\underset{\boldsymbol{\mathrm{k}}=\mathrm{2}} {\overset{\infty} {\prod}}\:\frac{\mathrm{k}^{\mathrm{3}} \:−\:\mathrm{1}}{\mathrm{k}^{\mathrm{3}} \:+\:\mathrm{1}}\right)^{\boldsymbol{\mathrm{n}}} \\ $$$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{complex}\:\mathrm{numbees}: \\ $$$$\mathrm{z}^{\mathrm{4}} \:+\:\mathrm{3z}^{\mathrm{3}} \:+\:\Omega\mathrm{z}^{\mathrm{2}} \:+\:\mathrm{3z}\:+\:\mathrm{1}\:=\:\mathrm{0} \\ $$…

Is-a-complex-number-If-not-so-what-is-It-

Question Number 56244 by Kunal12588 last updated on 12/Mar/19 $${Is}\:\infty\:{a}\:{complex}\:{number}. \\ $$$${If}\:{not}\:{so}\:{what}\:{is}\:{It}. \\ $$ Commented by Joel578 last updated on 12/Mar/19 $${it}\:{is}\:{not}\:{a}\:{number} \\ $$ Commented…

Given-complex-number-z-1-z-2-and-z-3-satiesfied-z-1-z-2-z-3-0-and-z-1-z-2-z-3-1-Prove-that-z-1-2-z-2-2-z-3-2-0-

Question Number 56146 by gunawan last updated on 11/Mar/19 $$\mathrm{Given}\:\mathrm{complex}\:\mathrm{number} \\ $$$${z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} ,\:\mathrm{and}\:{z}_{\mathrm{3}} \:\mathrm{satiesfied}\:{z}_{\mathrm{1}} +{z}_{\mathrm{2}} +{z}_{\mathrm{3}} =\mathrm{0} \\ $$$$\mathrm{and}\:\mid{z}_{\mathrm{1}} \mid=\mid{z}_{\mathrm{2}} \mid=\mid{z}_{\mathrm{3}} \mid=\mathrm{1}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$${z}_{\mathrm{1}}…

Determinate-the-module-and-the-argument-of-the-complex-number-z-1-cos-itan-1-cos-isin-with-pi-lt-lt-2pi-

Question Number 121657 by mathocean1 last updated on 10/Nov/20 $$\mathrm{Determinate}\:\mathrm{the}\:\mathrm{module} \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{argument}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{complex}\:\mathrm{number}\: \\ $$$$\mathrm{z}=\frac{\mathrm{1}−\mathrm{cos}\theta+\mathrm{itan}\theta}{\mathrm{1}+\mathrm{cos}\theta−\mathrm{isin}\theta} \\ $$$$\mathrm{with}\:\pi<\theta<\mathrm{2}\pi \\ $$$$ \\ $$ Commented by TANMAY…