Question Number 124921 by mathmax by abdo last updated on 07/Dec/20 $$\mathrm{calculate}\:\int_{−\infty} ^{+\infty} \:\mathrm{z}^{−\mathrm{x}^{\mathrm{2}} } \mathrm{dx}\:\:\mathrm{with}\:\mathrm{z}\:\mathrm{complex} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Search Results for: complex
Question Number 123886 by Ar Brandon last updated on 29/Nov/20 $$\mathrm{Let}\:\overset{−} {{l}z}+{l}\overset{−} {{z}}+{m}=\mathrm{0}\:\mathrm{be}\:\mathrm{a}\:\mathrm{straight}\:\mathrm{line}\:\mathrm{in}\:\mathrm{the}\:\mathrm{complex}\:\mathrm{plane} \\ $$$$\mathrm{and}\:{P}\left({z}_{\mathrm{0}} \right)\:\mathrm{be}\:\mathrm{a}\:\mathrm{point}\:\mathrm{in}\:\mathrm{the}\:\mathrm{plane}.\:\mathrm{Then}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{line}\:\mathrm{passing}\:\mathrm{through}\:{P}\left({z}_{\mathrm{0}} \right)\:\mathrm{and}\:\mathrm{perpendicular} \\ $$$$\mathrm{to}\:\mathrm{the}\:\mathrm{given}\:\mathrm{line}\:\mathrm{is}\:\_\_\_ \\ $$ Answered by…
Question Number 58113 by MJS last updated on 17/Apr/19 $$\mathrm{once}\:\mathrm{sgain}:\:\mathrm{it}'\mathrm{s}\:\mathrm{boring}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{questions}\:\mathrm{of} \\ $$$$\mathrm{minor}\:\mathrm{complexity}.\:\mathrm{we}\:\mathrm{don}'\mathrm{t}\:\mathrm{have}\:\mathrm{to},\:\mathrm{we}\:\mathrm{do} \\ $$$$\mathrm{it}\:\mathrm{to}\:\mathrm{help}\:\mathrm{unexperienced}\:\mathrm{people}\:\mathrm{to}\:\mathrm{grow}. \\ $$$$\mathrm{you}\:\mathrm{could}\:\mathrm{at}\:\mathrm{least}\:\mathrm{type}\:“\mathrm{thanks}''.\:\mathrm{otherwise} \\ $$$$\mathrm{you}\:\mathrm{might}\:\mathrm{be}\:\mathrm{ignored}\:\mathrm{after}\:\mathrm{a}\:\mathrm{while}… \\ $$ Commented by mr W last…
Question Number 57719 by Joel578 last updated on 10/Apr/19 $$\mathrm{Find}\:\mathrm{all}\:\mathrm{complex}\:\mathrm{number}\:{z}\:\mathrm{that}\:\mathrm{satisfy} \\ $$$$\mathrm{sinh}\:{z}\:=\:{i} \\ $$ Answered by mr W last updated on 10/Apr/19 $$\mathrm{sinh}\:{z}=\frac{{e}^{{z}} −{e}^{−{z}} }{\mathrm{2}}={i}…
Question Number 188224 by Shrinava last updated on 26/Feb/23 $$\mathrm{If}\:\:\:\Omega\:=\:\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\:\left(\underset{\boldsymbol{\mathrm{k}}=\mathrm{2}} {\overset{\infty} {\prod}}\:\frac{\mathrm{k}^{\mathrm{3}} \:−\:\mathrm{1}}{\mathrm{k}^{\mathrm{3}} \:+\:\mathrm{1}}\right)^{\boldsymbol{\mathrm{n}}} \\ $$$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{complex}\:\mathrm{numbees}: \\ $$$$\mathrm{z}^{\mathrm{4}} \:+\:\mathrm{3z}^{\mathrm{3}} \:+\:\Omega\mathrm{z}^{\mathrm{2}} \:+\:\mathrm{3z}\:+\:\mathrm{1}\:=\:\mathrm{0} \\ $$…
Question Number 122659 by mathocean1 last updated on 18/Nov/20 $${Determinate}\:{the}\:{geometric} \\ $$$${aspect}\:{described}\:{by}\:{M}\left({z}\right)\:{in} \\ $$$${complex}\:{plane}\:{such}\:{that}: \\ $$$${arg}\left(\overset{−} {{z}}−\mathrm{3}+{i}\right)\equiv\frac{\pi}{\mathrm{4}}\left[\mathrm{2}\pi\right] \\ $$ Answered by MJS_new last updated on…
Question Number 187359 by Humble last updated on 16/Feb/23 $$ \\ $$$${what}\:{are}\:{the}\:{two}\:{complex}\:{solution}\:{to} \\ $$$${X}^{−{x}} +\left(−{X}\right)^{{x}} =\mathrm{0}\:{in}\:{addition}\:{to}\:\pm\mathrm{1}\:? \\ $$ Answered by Frix last updated on 16/Feb/23…
Question Number 56244 by Kunal12588 last updated on 12/Mar/19 $${Is}\:\infty\:{a}\:{complex}\:{number}. \\ $$$${If}\:{not}\:{so}\:{what}\:{is}\:{It}. \\ $$ Commented by Joel578 last updated on 12/Mar/19 $${it}\:{is}\:{not}\:{a}\:{number} \\ $$ Commented…
Question Number 56146 by gunawan last updated on 11/Mar/19 $$\mathrm{Given}\:\mathrm{complex}\:\mathrm{number} \\ $$$${z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} ,\:\mathrm{and}\:{z}_{\mathrm{3}} \:\mathrm{satiesfied}\:{z}_{\mathrm{1}} +{z}_{\mathrm{2}} +{z}_{\mathrm{3}} =\mathrm{0} \\ $$$$\mathrm{and}\:\mid{z}_{\mathrm{1}} \mid=\mid{z}_{\mathrm{2}} \mid=\mid{z}_{\mathrm{3}} \mid=\mathrm{1}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$${z}_{\mathrm{1}}…
Question Number 121657 by mathocean1 last updated on 10/Nov/20 $$\mathrm{Determinate}\:\mathrm{the}\:\mathrm{module} \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{argument}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{complex}\:\mathrm{number}\: \\ $$$$\mathrm{z}=\frac{\mathrm{1}−\mathrm{cos}\theta+\mathrm{itan}\theta}{\mathrm{1}+\mathrm{cos}\theta−\mathrm{isin}\theta} \\ $$$$\mathrm{with}\:\pi<\theta<\mathrm{2}\pi \\ $$$$ \\ $$ Commented by TANMAY…