Question Number 38907 by ajfour last updated on 01/Jul/18 $$\sqrt{{c}^{\mathrm{2}} +{x}^{\mathrm{2}} }\:=\:\mathrm{1}+\frac{{c}}{{x}} \\ $$$${how}\:{many}\:{complex}\:{roots}\:? \\ $$ Commented by ajfour last updated on 01/Jul/18 Commented by…
Search Results for: complex
Question Number 169918 by pticantor last updated on 12/May/22 $${A}=\left\{\boldsymbol{{z}}\in\mathbb{C}:\:\mathrm{2}<\mid\boldsymbol{{z}}\mid<\mathrm{4}\right\} \\ $$$$\boldsymbol{{fine}}\:\boldsymbol{{log}}\left(\boldsymbol{{A}}\right) \\ $$$$\boldsymbol{{where}}\:\boldsymbol{{log}}\:\boldsymbol{{is}}\:\boldsymbol{{complex}}\:\boldsymbol{{logaritmique}} \\ $$ Answered by pticantor last updated on 12/May/22 $$\boldsymbol{{besoin}}\:\boldsymbol{{d}}'\boldsymbol{{aide}}\:\boldsymbol{{please}}!! \\…
Question Number 38284 by NECx last updated on 23/Jun/18 $${Find}\:{all}\:{the}\:{complex}\:{number}\:{in}\:{the} \\ $$$${rectangular}\:{form}\:{such}\:{that} \\ $$$$\left({z}−\mathrm{1}\right)^{\mathrm{4}} =−\mathrm{1} \\ $$$$ \\ $$ Commented by MrW3 last updated on…
Question Number 103459 by bemath last updated on 15/Jul/20 $${what}\:{are}\:{the}\:{complex}\:{solution}\:\mathrm{tan} \\ $$$$\left({z}\right)\:=\:−\mathrm{2}\:? \\ $$ Commented by mr W last updated on 15/Jul/20 $${z}={k}\pi−\mathrm{tan}^{−\mathrm{1}} \mathrm{2} \\…
Question Number 37382 by mondodotto@gmail.com last updated on 12/Jun/18 $$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{all}}\:\boldsymbol{\mathrm{real}}\:\boldsymbol{\mathrm{solutions}} \\ $$$$\left(\mathrm{2}−\boldsymbol{{x}}^{\mathrm{2}} \right)^{\boldsymbol{{x}}^{\mathrm{2}} −\mathrm{3}\sqrt{\mathrm{2}\boldsymbol{{x}}}+\mathrm{4}} =\mathrm{1} \\ $$$$\left.\mathrm{i}\right\}\boldsymbol{\mathrm{what}}\:\boldsymbol{\mathrm{if}}\:\boldsymbol{{x}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{permitted}} \\ $$$$\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{be}}\:\boldsymbol{\mathrm{complex}}\:\boldsymbol{\mathrm{number}} \\ $$$$\left.\boldsymbol{\mathrm{ii}}\right\}\boldsymbol{\mathrm{what}}\:\boldsymbol{\mathrm{if}}\:\mathrm{1}=\left(−\mathrm{1}\right)^{\mathrm{2}\boldsymbol{\mathrm{n}}} ? \\ $$ Commented…
Question Number 36676 by tawa tawa last updated on 04/Jun/18 $$\mathrm{if}\:\:\mathrm{z}\:=\:−\:\mathrm{27},\:\:\mathrm{find}\:\mathrm{all}\:\mathrm{the}\:\mathrm{root}\:\mathrm{of}\:\mathrm{z}\:\mathrm{in}\:\mathrm{complex}\:\mathrm{plain} \\ $$ Commented by abdo mathsup 649 cc last updated on 04/Jun/18 $${the}\:{roots}\:{are}?{the}\:{comlex}\:{z}\:/\:{z}^{\mathrm{2}} \:=−\mathrm{27}\:=\left({i}\sqrt{\mathrm{27}}\right)^{\mathrm{2}}…
Question Number 101159 by hardylanes last updated on 30/Jun/20 $${given}\:{the}\:{complex}\:{number}\:{z}\:{such}\:{that} \\ $$$${z}−\mathrm{4}{i}={a}+\mathrm{3}{zi}.\: \\ $$$${find}\:{the}\:{value}\:{of}\:{a}\:{if}\:\:{z}\:{is}\:{purwly}\:{imaginary} \\ $$$$ \\ $$ Answered by Rio Michael last updated on…
Question Number 100585 by Rio Michael last updated on 27/Jun/20 $$\:\mathrm{Given}\:\mathrm{that}\:\:{G}\:=\:\left\{\mathrm{1},\left({x}\:+\:{yi}\right),\left({x}−{yi}\right)\right\}\:\mathrm{form}\:\mathrm{a}\:\mathrm{group} \\ $$$$\mathrm{under}\:\mathrm{complex}\:\mathrm{multiplication},\:\mathrm{describe}\:\mathrm{the}\:\mathrm{locus} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{point}\:\left({x},{y}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 100583 by Rio Michael last updated on 27/Jun/20 $$\:\mathrm{A}\:\mathrm{transformation}\:{f}\:\mathrm{on}\:\mathrm{a}\:\mathrm{complex}\:\mathrm{plane} \\ $$$$\mathrm{is}\:\mathrm{defined}\:\mathrm{by}\:{z}'\:=\:\left(\mathrm{1}\:+{i}\right){z}\:−\mathrm{3}\:+\:\mathrm{4}{i} \\ $$$$\:\mathrm{show}\:\mathrm{that}\:{f}\:\mathrm{is}\:\mathrm{a}\:\mathrm{simultitude}\:\mathrm{with}\:\mathrm{radius}\:{r}\:\mathrm{and}\:\mathrm{centre} \\ $$$$\Omega\:\mathrm{to}\:\mathrm{be}\:\mathrm{determined}. \\ $$$$\mathrm{Determine}\:\mathrm{to}\:\mathrm{the}\:\mathrm{invariant}\:\mathrm{point}\:\mathrm{under}\:{f}. \\ $$ Terms of Service Privacy…
Question Number 164478 by mathocean1 last updated on 17/Jan/22 $${Given}\:\begin{cases}{{u}_{\mathrm{0}} =\alpha\:\in\:\mathbb{C}}\\{{u}_{{n}+\mathrm{1}} =\frac{{u}_{{n}} +\mid{u}_{{n}} \mid}{\mathrm{2}}}\end{cases}\:;\:{n}\in\:\mathbb{N} \\ $$$${where}\:\left({u}_{{n}} \right)\:_{{n}\in\mathbb{N}} \:{is}\:{a}\:{complex}\:{sequence}. \\ $$$${Determinate}\:{the}\:{sequence}\:\left({Im}\left({u}_{{n}} \right)\right)\:_{{n}\in\mathbb{N}} \\ $$$${and}\:{calculate}\:{its}\:{limit}. \\ $$$${NB}:\:{Im}\left({u}_{{n}}…