Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 206962 by Ghisom last updated on 01/May/24

∫_0 ^1 ((√(1−x))/( (√(1−(√(1−x))))+(√(1+(√(1−x))))))dx=?

101x11x+1+1xdx=?

Answered by lepuissantcedricjunior last updated on 02/May/24

∫_0 ^1 ((√(1−x))/( (√(1−(√(1−x))))+(√(1+(√(1−x))))))dx=k  k=∫_0 ^1 ((√(1−x))/(((√(1−(√(1−x)))))^2 −((√(1+(√(1−x)))))^2 ))×(((√(1−(√(1−x))))−(√(1+(√(1−x)))))/1) dx  k=∫_0 ^1 (((√(1−x))((√(1−(√(1−x))))−(√(1+(√(1−x))))))/(−2(√(1−(√x)))))dx  k=−(1/2)∫_0 ^1 ((√(1−(√(1−x)))))dx+(1/2)∫_0 ^1 ((√(1+(√(1−x)))))dx  posons  { ((1−(√(1−x))=u^2 )),((1+(√(1−x))=v^2 )) :}=> { ((x=1−(1−u^2 )^2 )),((x=1−(v^2 −1)^2 )) :} => { ((dx=2u(1−u^2 )du)),((dx=−2v(v^2 −1)dv)) :}  qd: { ( { ((x→0)),((x→1)) :}),( { ((x→1)),((x→0)) :}) :}=> { ( { ((u→0)),((u→1)) :}),( { ((v→1)),((v→2)) :}) :}  k=−∫_0 ^1 u^2 (1−u^2 )du−∫_1 ^2 v^2 (v^2 −1)dv     =[(1/3)u^3 −(1/5)u^5 ]_0 ^1 −[(1/5)v^5 −(1/3)v^3 ]_1 ^2      =[(1/3)−(1/5)−((32)/5)+(8/3)+(1/5)−(1/3)]     =(8/3)−((32)/5)=((40−96)/(15))=−((56)/(15))

011x11x+1+1xdx=kk=011x(11x)2(1+1x)2×11x1+1x1dxk=011x(11x1+1x)21xdxk=1201(11x)dx+1201(1+1x)dxposons{11x=u21+1x=v2=>{x=1(1u2)2x=1(v21)2=>{dx=2u(1u2)dudx=2v(v21)dvqd:{{x0x1{x1x0=>{{u0u1{v1v2k=01u2(1u2)du12v2(v21)dv=[13u315u5]01[15v513v3]12=[1315325+83+1513]=83325=409615=5615

Commented by Frix last updated on 02/May/24

Error:  qd: { ( { ((x→0)),((x→1)) :}),( { ((x→1)),((x→0)) :}) :}=> { ( { ((u→0)),((u→1)) :}),( { ((v→1)),((v→(√2))) :}) :}

Error:qd:{{x0x1{x1x0=>{{u0u1{v1v2

Answered by Frix last updated on 02/May/24

∫_0 ^1 ((√(1−x))/( (√(1−(√(1−x))))+(√(1+(√(1−x))))))×(((√(1+(√(1−x))))−(√(1−(√(1−x)))))/( (√(1+(√(1−x))))−(√(1−(√(1−x))))))dx=  =∫_0 ^1 (((√(1+(√(1−x))))−(√(1−(√(1−x)))))/2)dx=  =(1/2)∫_0 ^1 (√(1+(√(1−x))))dx−(1/2)∫_0 ^1 (√(1−(√(1−x))))dx    (1/2)∫_0 ^1 (√(1+(√(1−x))))dx=       t=(√(1+(√(1−x)))) ⇔ x=2t^2 −t^4 ∧t≥1       ⇒ dx=4(t−t^3 )dt  =2∫_( (√2)) ^1 t^2 −t^4 dt=2[(t^3 /3)−(t^5 /5)]_(√2) ^1 =((4(1+(√2)))/(15))    (1/2)∫_0 ^1 (√(1−(√(1−x))))dx=       t=(√(1−(√(1−x)))) ⇔ x=2t^2 −t^4 ∧0≤t≤1       ⇒ dx=4(t−t^3 )dt  =2∫_0 ^1 t^2 −t^4 dt=2[(t^3 /3)−(t^5 /5)]_0 ^1 =(4/(15))    ⇒  ∫_0 ^1 ((√(1−x))/( (√(1−(√(1−x))))+(√(1+(√(1−x))))))dx=((4(√2))/(15))

101x11x+1+1x×1+1x11x1+1x11xdx==101+1x11x2dx==12101+1xdx121011xdx12101+1xdx=t=1+1xx=2t2t4t1dx=4(tt3)dt=212t2t4dt=2[t33t55]21=4(1+2)15121011xdx=t=11xx=2t2t40t1dx=4(tt3)dt=210t2t4dt=2[t33t55]01=415101x11x+1+1xdx=4215

Commented by Ghisom last updated on 02/May/24

thank you

thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com