All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 207652 by universe last updated on 22/May/24
∫01log(1+x3)dx=?and∫01log(1+x4)dx=?andifpossiblethenfindthevalueofpp=∫01log(1+xn)dx=?n∈N
Answered by Berbere last updated on 22/May/24
usingxn+1=∏n−1k=0(x−ei(2k+1)πn)=∏n−1k=0ln(x−ei(2k+1)πn)∫01ln(x−ei(2k+1)πn))dx=ln(ei(π+2k+1nπ)(1−xei(2k+1)πn))usingprincipallogrepresentationlog(z)=ln∣z∣+iarg(z);arg(z)∈[−π2,3π2[ei(π+2k+1nπ)=ei(−π+2k+1nπ);ln(ei(−π+2k+1nπ))=i(−π+2k+1nπ)p=∑n−1k=0i(−π+2k+1nπ)+∑n−1k=0∫01ln(1−xe−i(2k+1n)π)dx=∑n−1k=0∫01ln(1−xe−i(2k+1n)π)dxln(1−xa)]01=1a((ax−1)ln(1−xa)−ax)]01=1a(a−1)ln(1−a)−1=∑n−1k=0ei(2k+1n)π[(e−i(2k+1n)π−1)ln(1−e−iπn(2k+1))−1]
Terms of Service
Privacy Policy
Contact: info@tinkutara.com