Question and Answers Forum

All Questions      Topic List

Operation Research Questions

Previous in All Question      Next in All Question      

Previous in Operation Research      Next in Operation Research      

Question Number 135127 by Dwaipayan Shikari last updated on 10/Mar/21

∫_0 ^1 log^2 (Γ(x))dx

01log2(Γ(x))dx

Answered by mathmax by abdo last updated on 11/Mar/21

we have Γ(x).Γ(1−x)=(π/(sin(πx))) ⇒  log(Γ(x))+log(Γ(1−x))=log(π)−log(sin(πx)) ⇒  log(Γ(x))^2  +2log(Γ(x))log(Γ(1−x))+log^2 (Γ(1−x))  =log^2 (π)−2logπ log(sin(πx))+log^2 (sin(πx)) ⇒  ∫_0 ^1 log^2 (Γ(x))dx+∫_0 ^1 log^2 (Γ(1−x))dx+2∫_0 ^1 log(Γ(x))log(Γ(1−x))dx  =log^2 (π)−2logπ ∫_0 ^1 log(sin(πx))dx+∫_0 ^1  log^2 (sin(πx))dx  ∫_0 ^1 log^2 (Γ(1−x))dx =_(1−x=t)    ∫_0 ^1 log^2 (Γ(t))dt  ∫_0 ^1  log(sin(πx))dx =_(πx=t)  (1/π) ∫_0 ^π log(sint)dt  =(1/π)∫_0 ^(π/2) log(sint)dt +(1/π)∫_(π/2) ^π log(sint)dt (→t=(π/2)+u)  =(1/π)(−(π/2)log2)+(1/π)(−(π/2)log2) =−log(2)  ⇒2∫_0 ^1  log^2 (Γ(x))dx+2∫_0 ^1 log(Γ(x)).log(Γ(1−x))dx  =log^2 π+2logπlog2 +∫_0 ^1  log^2 (sin(πx))dx  ...be continued...

wehaveΓ(x).Γ(1x)=πsin(πx)log(Γ(x))+log(Γ(1x))=log(π)log(sin(πx))log(Γ(x))2+2log(Γ(x))log(Γ(1x))+log2(Γ(1x))=log2(π)2logπlog(sin(πx))+log2(sin(πx))01log2(Γ(x))dx+01log2(Γ(1x))dx+201log(Γ(x))log(Γ(1x))dx=log2(π)2logπ01log(sin(πx))dx+01log2(sin(πx))dx01log2(Γ(1x))dx=1x=t01log2(Γ(t))dt01log(sin(πx))dx=πx=t1π0πlog(sint)dt=1π0π2log(sint)dt+1ππ2πlog(sint)dt(t=π2+u)=1π(π2log2)+1π(π2log2)=log(2)201log2(Γ(x))dx+201log(Γ(x)).log(Γ(1x))dx=log2π+2logπlog2+01log2(sin(πx))dx...becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com