All Questions Topic List
Operation Research Questions
Previous in All Question Next in All Question
Previous in Operation Research Next in Operation Research
Question Number 135127 by Dwaipayan Shikari last updated on 10/Mar/21
∫01log2(Γ(x))dx
Answered by mathmax by abdo last updated on 11/Mar/21
wehaveΓ(x).Γ(1−x)=πsin(πx)⇒log(Γ(x))+log(Γ(1−x))=log(π)−log(sin(πx))⇒log(Γ(x))2+2log(Γ(x))log(Γ(1−x))+log2(Γ(1−x))=log2(π)−2logπlog(sin(πx))+log2(sin(πx))⇒∫01log2(Γ(x))dx+∫01log2(Γ(1−x))dx+2∫01log(Γ(x))log(Γ(1−x))dx=log2(π)−2logπ∫01log(sin(πx))dx+∫01log2(sin(πx))dx∫01log2(Γ(1−x))dx=1−x=t∫01log2(Γ(t))dt∫01log(sin(πx))dx=πx=t1π∫0πlog(sint)dt=1π∫0π2log(sint)dt+1π∫π2πlog(sint)dt(→t=π2+u)=1π(−π2log2)+1π(−π2log2)=−log(2)⇒2∫01log2(Γ(x))dx+2∫01log(Γ(x)).log(Γ(1−x))dx=log2π+2logπlog2+∫01log2(sin(πx))dx...becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com