Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 103154 by Dwaipayan Shikari last updated on 13/Jul/20

∫_0 ^1 logxlog(1−x)dx

01logxlog(1x)dx

Answered by OlafThorendsen last updated on 13/Jul/20

I = ∫_0 ^1 lnxln(1−x)dx  −(1/(1−x)) = −Σ_(n=0) ^∞ x^n   ln(1−x) = −Σ_(n=0) ^∞ (x^(n+1) /(n+1)) = −Σ_(n=1) ^∞ (x^n /n)  I = −∫_0 ^1 lnxΣ_(n=1) ^∞ (x^n /n)dx  I = −Σ_(n=1) ^∞ (1/n)∫_0 ^1 x^n lnxdx  I_n  = −∫_0 ^1 x^n lnxdx  I_n  = −[(x^(n+1) /(n+1))lnx]_0 ^1 +∫_0 ^1 (x^(n+1) /(n+1)).(1/x)dx  I_n  = 0+∫_0 ^1 (x^n /(n+1))dx = [(x^(n+1) /((n+1)^2 ))]_0 ^1   I_n  = (1/((n+1)^2 ))  I = Σ_(n=1) ^∞ (1/n)I_n  = Σ_(n=1) ^∞ (1/(n(n+1)^2 ))  I = Σ_(n=1) ^∞ ((1/n)−(1/(n+1))−(1/((n+1)^2 )))  Σ_(n=1) ^∞ ((1/n)−(1/(n+1))) = (1−(1/2))+((1/2)−(1/3))+...  Σ_(n=1) ^∞ ((1/n)−(1/(n+1))) = 1  I = 1−Σ_(n=1) ^∞ (1/((n+1)^2 ))  I = 1−Σ_(n=2) ^∞ (1/n^2 )  I = 2−Σ_(n=1) ^∞ (1/n^2 )  I = 2−ζ(2) = 2−(π^2 /6)

I=01lnxln(1x)dx11x=n=0xnln(1x)=n=0xn+1n+1=n=1xnnI=01lnxn=1xnndxI=n=11n01xnlnxdxIn=01xnlnxdxIn=[xn+1n+1lnx]01+01xn+1n+1.1xdxIn=0+01xnn+1dx=[xn+1(n+1)2]01In=1(n+1)2I=n=11nIn=n=11n(n+1)2I=n=1(1n1n+11(n+1)2)n=1(1n1n+1)=(112)+(1213)+...n=1(1n1n+1)=1I=1n=11(n+1)2I=1n=21n2I=2n=11n2I=2ζ(2)=2π26

Commented by Dwaipayan Shikari last updated on 13/Jul/20

Great sir!

Greatsir!

Answered by bobhans last updated on 13/Jul/20

I = ∫_0 ^1  ln(x) ln(1−x) dx   by Maclaurin series   ln(1−x) = −Σ_(n=1) ^∞ (x^n /n)   we obtain I=−∫_0 ^1  ln(x)Σ_(n=1) ^∞ (x^n /n) dx   I = −Σ_(n=1) ^∞ (1/n)∫_0 ^1  x^n  ln(x) dx [ by parts ]   { ((u = ln(x))),((dv = x^n  dx )) :}  I=−Σ_(n=1) ^∞ (1/n)∣((x^(n+1) /(n+1)) ln(x)−(x^(n+1) /((n+1)^2 )))∣_0 ^1   I= Σ_(n=1) ^∞ (1/(n(n+1)^2 )) [ by L′Hopital rule′s]  I= Σ_(n=1) ^∞ ((1/n)−(1/(n+1))−(1/((n+1)^2 )))  the first series Σ_(n=1) ^∞ ((1/n)−(1/(n+1))) is  telescoping ⇒ lim_(p→∞)  Σ_(n=1) ^p  ((1/n)−(1/(n+1)))  = lim_(p→∞)  (1−(1/(p+1))) = 1   now the second series   Σ_(n=1) ^∞  (1/((n+1)^2 )) = Σ_(k=2) ^∞  (1/k^2 ) = −1+Σ_(k=1) ^∞  (1/k^2 )  = −1+(π^2 /6) .  therefore I = ∫_0 ^1  ln(x) ln(1−x)dx =   1−(−1+(π^2 /6)) = 2−(π^2 /6) . ★

I=10ln(x)ln(1x)dxbyMaclaurinseriesln(1x)=n=1xnnweobtainI=10ln(x)n=1xnndxI=n=11n10xnln(x)dx[byparts]{u=ln(x)dv=xndxI=n=11n(xn+1n+1ln(x)xn+1(n+1)2)01I=n=11n(n+1)2[byLHopitalrules]I=n=1(1n1n+11(n+1)2)thefirstseriesn=1(1n1n+1)istelescopinglimppn=1(1n1n+1)=limp(11p+1)=1nowthesecondseriesn=11(n+1)2=k=21k2=1+k=11k2=1+π26.thereforeI=10ln(x)ln(1x)dx=1(1+π26)=2π26.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com