Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 144849 by Dwaipayan Shikari last updated on 29/Jun/21

∫_0 ^2 (1/(e^({x}^2 ) +1))dx   {x}  is fractional part of x

021e{x}2+1dx{x}isfractionalpartofx

Answered by mathmax by abdo last updated on 29/Jun/21

Φ=∫_0 ^2  (dx/(e^({x}^2 ) +1))  we have x=[x]+{x} ⇒{x}=x−[x] ⇒  Φ=∫_0 ^1  (dx/(e^((x−[x])^2 ) +1))+∫_1 ^2  (dx/(e^((x−[x])^2 ) +1))  =∫_0 ^1  (dx/(1+e^x^2  ))  +∫_1 ^2  (dx/(1+e^((x−1)^2 ) ))(→x−1=t)  =∫_0 ^1  (dx/(1+e^x^2  )) +∫_0 ^1  (dt/(1+e^t^2  ))=2∫_0 ^1  (dx/(1+e^x^2  ))  ∫_0 ^1  (dx/(1+e^x^2  )) =∫_0 ^1  (e^(−x^2 ) /(1+e^(−x^2 ) ))dx =∫_0 ^1  e^(−x^2 ) Σ_(n=0) ^∞  e^(−nx^2 ) dx  =Σ_(n=0) ^∞  ∫_0 ^1  e^(−(n+1)x^2 ) dx =_((√(n+1))x=z)   Σ_(n=0) ^∞  ∫_0 ^(√(n+1)) e^(−z^2 ) (dz/(n+1))  Φ=Σ_(n=0) ^∞  (1/(n+1))∫_0 ^(√(n+1))  e^(−z^2 ) dz

Φ=02dxe{x}2+1wehavex=[x]+{x}{x}=x[x]Φ=01dxe(x[x])2+1+12dxe(x[x])2+1=01dx1+ex2+12dx1+e(x1)2(x1=t)=01dx1+ex2+01dt1+et2=201dx1+ex201dx1+ex2=01ex21+ex2dx=01ex2n=0enx2dx=n=001e(n+1)x2dx=n+1x=zn=00n+1ez2dzn+1Φ=n=01n+10n+1ez2dz

Commented by mathmax by abdo last updated on 29/Jun/21

Φ=Σ_(n=0) ^∞  (2/(n+1))∫_0 ^(√(n+1)) e^(−z^2 ) dz

Φ=n=02n+10n+1ez2dz

Commented by Dwaipayan Shikari last updated on 29/Jun/21

Thanks sir

Thankssir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com