Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 11436 by @ANTARES_VY last updated on 26/Mar/17

  ∫_0 ^(𝛑/4) sinxΓ—cos^7 x dx.  solves...

βˆ«Ο€40sinxΓ—cos7xdx.solves...

Commented by FilupS last updated on 26/Mar/17

let u=cos(x)  ∴ du=βˆ’sin(x)dx     ∴∫_0 ^( Ο€/4) sin(x)cos^7 (x)dx=βˆ’βˆ«_(x=0) ^( x=Ο€/4) u^7 du  βˆ’βˆ«_(x=0) ^( x=Ο€/4) u^7 du=βˆ’[(1/8)u^8 ]_(x=0) ^(x=Ο€/4)   =βˆ’(1/8)[cos^8 (x)]_(x=0) ^(x=Ο€/4)   =βˆ’(1/8)(cos^8 ((Ο€/4))βˆ’cos^8 (0))  =βˆ’(1/8)(((1/(√2)))^8 βˆ’1)  =βˆ’(1/8)(2^(βˆ’(1/2)Γ—8) βˆ’1)  =βˆ’(1/8)(2^(βˆ’4) βˆ’1)  =βˆ’(1/2^3 )((1/2^4 )βˆ’1)  =βˆ’((1/2^7 )βˆ’(1/2^3 ))  =βˆ’((1/2^7 )βˆ’(2^4 /2^7 ))  =βˆ’(((1βˆ’2^4 )/2^7 ))  =((2^4 βˆ’1)/2^7 )  =((15)/(128))

letu=cos(x)∴du=βˆ’sin(x)dx∴∫0Ο€/4sin(x)cos7(x)dx=βˆ’βˆ«x=0x=Ο€/4u7duβˆ’βˆ«x=0x=Ο€/4u7du=βˆ’[18u8]x=0x=Ο€/4=βˆ’18[cos8(x)]x=0x=Ο€/4=βˆ’18(cos8(Ο€4)βˆ’cos8(0))=βˆ’18((12)8βˆ’1)=βˆ’18(2βˆ’12Γ—8βˆ’1)=βˆ’18(2βˆ’4βˆ’1)=βˆ’123(124βˆ’1)=βˆ’(127βˆ’123)=βˆ’(127βˆ’2427)=βˆ’(1βˆ’2427)=24βˆ’127=15128

Terms of Service

Privacy Policy

Contact: info@tinkutara.com