Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 85346 by naka3546 last updated on 21/Mar/20

∫_( 0)   ^∞   ((cos (πx))/(π^2 +x^2 )) dx  =  ?

0cos(πx)π2+x2dx=?

Commented by abdomathmax last updated on 21/Mar/20

A =∫_0 ^∞   ((cos(πx))/(x^2  +π^2 ))dx ⇒2A =∫_(−∞) ^(+∞)  ((cos(πx))/(x^2  +π^2 ))dx  =Re(∫_(−∞) ^(+∞)  (e^(iπx) /(x^2 +π^2 ))dx) let ϕ(z) =(e^(iπz) /(z^2  +π^2 ))  we have ϕ(z)=(e^(iπz) /((z−iπ)(z+iπ)))  residus theirem give   ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπRes(ϕ,iπ)  =2iπ(e^(iπ(iπ)) /(2iπ)) =e^(−π^2  )  ⇒ A =(e^(−π^2 ) /2)

A=0cos(πx)x2+π2dx2A=+cos(πx)x2+π2dx=Re(+eiπxx2+π2dx)letφ(z)=eiπzz2+π2wehaveφ(z)=eiπz(ziπ)(z+iπ)residustheiremgive+φ(z)dz=2iπRes(φ,iπ)=2iπeiπ(iπ)2iπ=eπ2A=eπ22

Answered by M±th+et£s last updated on 21/Mar/20

f(p)=∫_0 ^∞ ((cos(pπx))/(π^2 +x^2 )) dx⇒⇒⇒⌊(f(p))=∫_0 ^∞ ∫_0 ^∞ ((cos(pπx))/(π^2 +x^2 )) dx dp  =∫_0 ^∞ (1/(π^2 +x^2 ))∫_0 ^∞ e^(−ps)  cos(pπx) dx dp  =∫_0 ^∞ (1/((π^2 +x^2 )))((s/(s^2 +π^2 x^2 )))dx  =(s/(s−π^4 ))∫_0 ^∞ ((s^2 +π^2 x^2 −π^4 −π^2 x^2 )/((π^2 +x^2 )(s^2 +π^2 x^2 ))) dx  (s/(s^2 −π^4 ))∫((1/(π^2 +x^2 ))−(π^2 /(s^2 +π^2 x^2 )))dx  (s/(s^2 −π^4 ))[(1/π)tan^(−1) (x/π) −(π/s)tan^(−1) ((πx)/s)]_0 ^∞   (s/(s^2 −π^4 ))[(1/2)−(π^2 /(2s))]  (s/(s^2 −π^4 ))(((s−π^2 )/(2s)))=(1/(2(s+π^2 )))  f(p)=⌊^(−1) ((1/(s+π^2 )))  =(1/2)e^(−π^2    )

f(p)=0cos(pπx)π2+x2dx⇒⇒⇒(f(p))=00cos(pπx)π2+x2dxdp=01π2+x20epscos(pπx)dxdp=01(π2+x2)(ss2+π2x2)dx=ssπ40s2+π2x2π4π2x2(π2+x2)(s2+π2x2)dxss2π4(1π2+x2π2s2+π2x2)dxss2π4[1πtan1xππstan1πxs]0ss2π4[12π22s]ss2π4(sπ22s)=12(s+π2)f(p)=1(1s+π2)=12eπ2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com