All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 85346 by naka3546 last updated on 21/Mar/20
∫0∞cos(πx)π2+x2dx=?
Commented by abdomathmax last updated on 21/Mar/20
A=∫0∞cos(πx)x2+π2dx⇒2A=∫−∞+∞cos(πx)x2+π2dx=Re(∫−∞+∞eiπxx2+π2dx)letφ(z)=eiπzz2+π2wehaveφ(z)=eiπz(z−iπ)(z+iπ)residustheiremgive∫−∞+∞φ(z)dz=2iπRes(φ,iπ)=2iπeiπ(iπ)2iπ=e−π2⇒A=e−π22
Answered by M±th+et£s last updated on 21/Mar/20
f(p)=∫0∞cos(pπx)π2+x2dx⇒⇒⇒⌊(f(p))=∫0∞∫0∞cos(pπx)π2+x2dxdp=∫0∞1π2+x2∫0∞e−pscos(pπx)dxdp=∫0∞1(π2+x2)(ss2+π2x2)dx=ss−π4∫0∞s2+π2x2−π4−π2x2(π2+x2)(s2+π2x2)dxss2−π4∫(1π2+x2−π2s2+π2x2)dxss2−π4[1πtan−1xπ−πstan−1πxs]0∞ss2−π4[12−π22s]ss2−π4(s−π22s)=12(s+π2)f(p)=⌊−1(1s+π2)=12e−π2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com