Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 139283 by qaz last updated on 25/Apr/21

∫_0 ^∞ ((ln^2 x)/(x^2 +a^2 ))dx=(π/(8a))(π^2 +4ln^2 a)         ,a>0

0ln2xx2+a2dx=π8a(π2+4ln2a),a>0

Answered by Ar Brandon last updated on 10/Aug/21

℧=∫_0 ^∞ ((ln^2 x)/(x^2 +a^2 ))dx , x=atanθ      =(1/a)∫_0 ^(π/2) ln^2 (atanθ)dθ      =(1/a)∫_0 ^(π/2) (ln^2 a+2ln(a)ln(tanθ)+ln^2 (tanθ))dθ      =(π/(2a))ln^2 a+(1/a)∫_0 ^(π/2) ln^2 (tanθ)dθ  f(α)=∫_0 ^(π/2) tan^α θdθ=((Γ(((α+1)/2))Γ(((1−α)/2)))/2), f(0)=(π/2)  lnf(α)=lnΓ(((α+1)/2))+lnΓ(((1−α)/2))+ln((1/2))  ((f ′(α))/(f(α)))=(1/2)(ψ(((α+1)/2))−ψ(((1−α)/2)))  f ′(0)=(π/4)(ψ((1/2))−ψ((1/2)))=0  f ′′(α)=((f(α))/4)(ψ′(((α+1)/2))+ψ′(((1−α)/2)))+((f ′(α))/2)(ψ(((α+1)/2))+ψ(((1−α)/2)))  f ′′(0)=(π/8)((π^2 /(sin^2 ((π/2)))))+0=(π^3 /8)=∫_0 ^(π/2) ln^2 (tanθ)dθ  ℧=(π/(2a))ln^2 a+(π^3 /(8a))=(π/(8a))(π^2 +4ln^2 a)

=0ln2xx2+a2dx,x=atanθ=1a0π2ln2(atanθ)dθ=1a0π2(ln2a+2ln(a)ln(tanθ)+ln2(tanθ))dθ=π2aln2a+1a0π2ln2(tanθ)dθf(α)=0π2tanαθdθ=Γ(α+12)Γ(1α2)2,f(0)=π2lnf(α)=lnΓ(α+12)+lnΓ(1α2)+ln(12)f(α)f(α)=12(ψ(α+12)ψ(1α2))f(0)=π4(ψ(12)ψ(12))=0f(α)=f(α)4(ψ(α+12)+ψ(1α2))+f(α)2(ψ(α+12)+ψ(1α2))f(0)=π8(π2sin2(π2))+0=π38=0π2ln2(tanθ)dθ=π2aln2a+π38a=π8a(π2+4ln2a)

Commented by qaz last updated on 25/Apr/21

i expect someone who could show me use Residue Theorem,but still thank you Sir.

iexpectsomeonewhocouldshowmeuseResidueTheorem,butstillthankyouSir.

Commented by Ar Brandon last updated on 25/Apr/21

You′re welcome, Sir

Yourewelcome,Sir

Answered by mathmax by abdo last updated on 26/Apr/21

f(t)=∫_0 ^∞  ((x^t lnx)/(x^2  +a^2 ))dx ⇒f(t)=_(x=ay)    ∫_0 ^∞   (((ay)^t  ln(ay))/(a^2 (y^2  +1)))ady  =a^(t−1)  ∫_0 ^∞  ((y^t (lna+lny))/(y^2  +1))dy =a^(t−1) lna ∫_0 ^∞  (y^t /(y^2  +1))dy +a^(t−1) ∫_0 ^∞  (y^t /(y^2  +1))lny dy  we have  ∫_0 ^∞  (y^t /(y^2 +1))dy =_(y^2 =u)   ∫_0 ^∞  (u^(t/2) /(u+1))(du/(2(√u)))  =(1/2)∫_0 ^∞   (u^((t/2)+(1/2)−1) /(u+1))du =(1/2)×(π/(sin(π(((t+1)/2))))) =(π/(2sin(((πt)/2)+(π/2))))  =(π/(2cos(((πt)/2)))) let find Φ =∫_0 ^∞  (y^t /(y^2  +1))lny dy  Φ=−(1/2)Re(Σ Res(w z_i ))  with w(z) =(z^t /(z^2  +1))ln^2 z=((z^t ln^2 z)/((z−i)(z+i)))  Res(w,i) =((i^t  ln^2 (i))/(2i)) =((e^((iπt)/2)  (((iπ)/2))^2 )/(2i)) =−(π^2 /(8i)) e^((iπt)/2)  =((iπ^2 )/8) e^((iπt)/2)   Res(w,−i) =−(1/(2i))(−i)^t  ln^2 (−i)  =−(1/(2i))e^(−((iπt)/2)) (−((iπ)/2))^2  =(π^2 /(4i)) e^(−((iπ)/2))  =−((iπ^2 )/8)e^(−((iπt)/2))  ⇒  Σ Res=((iπ^2 )/8)(e^((iπt)/2) −e^(−((iπt)/2)) ) =((iπ^2 )/8)(2i sin(((πt)/2)))  =−(π^2 /4)sin(((πt)/2)) ⇒f(t)=a^(t−1) lna.(π/(2cos(((πt)/2))))  −a^(t−1)  (π^2 /4)sin(((πt)/2))  but f(t)=∫_0 ^∞ ((e^(tlogx) logx)/(x^2  +a^2 ))dx ⇒  f^′ (t)=∫_0 ^∞   ((x^t  log^2 x)/(x^2  +a^2 ))dx ⇒f^′ (o)=∫_0 ^∞  ((log^2 x)/(x^2  +a^2 ))dx  rest calculus of f^′ (x) and f^′ (o)....be continued...

f(t)=0xtlnxx2+a2dxf(t)=x=ay0(ay)tln(ay)a2(y2+1)ady=at10yt(lna+lny)y2+1dy=at1lna0yty2+1dy+at10yty2+1lnydywehave0yty2+1dy=y2=u0ut2u+1du2u=120ut2+121u+1du=12×πsin(π(t+12))=π2sin(πt2+π2)=π2cos(πt2)letfindΦ=0yty2+1lnydyΦ=12Re(ΣRes(wzi))withw(z)=ztz2+1ln2z=ztln2z(zi)(z+i)Res(w,i)=itln2(i)2i=eiπt2(iπ2)22i=π28ieiπt2=iπ28eiπt2Res(w,i)=12i(i)tln2(i)=12ieiπt2(iπ2)2=π24ieiπ2=iπ28eiπt2ΣRes=iπ28(eiπt2eiπt2)=iπ28(2isin(πt2))=π24sin(πt2)f(t)=at1lna.π2cos(πt2)at1π24sin(πt2)butf(t)=0etlogxlogxx2+a2dxf(t)=0xtlog2xx2+a2dxf(o)=0log2xx2+a2dxrestcalculusoff(x)andf(o)....becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com