Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 130979 by mnjuly1970 last updated on 31/Jan/21

                          φ =∫_0 ^( ∞) log^2 (x)sin(x^2 )dx=?       i had solved that already  and:     answ  : = −((π^2 (√(2π)) )/(32))

ϕ=0log2(x)sin(x2)dx=?ihadsolvedthatalreadyand:answ:=π22π32

Commented by Dwaipayan Shikari last updated on 31/Jan/21

∫_0 ^∞ ((tanx)/x)dx  ⇒Diverges

0tanxxdxDiverges

Commented by Dwaipayan Shikari last updated on 31/Jan/21

∫_0 ^∞ ((sinx)/x)dx=∫_0 ^∞ ∫_0 ^∞ e^(−xt) sinx dtdx  =(1/(2i))∫_0 ^∞ (1/(t−i))−(1/(t+i))dt  =∫_0 ^∞ (1/(t^2 +1))dt=(π/2)

0sinxxdx=00extsinxdtdx=12i01ti1t+idt=01t2+1dt=π2

Commented by mnjuly1970 last updated on 31/Jan/21

yes it is convergent   i will prepare   other question...

yesitisconvergentiwillprepareotherquestion...

Answered by mnjuly1970 last updated on 31/Jan/21

Answered by mnjuly1970 last updated on 31/Jan/21

Answered by Dwaipayan Shikari last updated on 31/Jan/21

I(a)=∫_0 ^∞ x^a sin(x^2 )dx  I(a)=(1/(2i))∫_0 ^∞ x^a e^(ix^2 ) −x^a e^(−ix^2 ) dx         x^2 =iu    x^2 =−ij  I(a)=(1/4)∫_0 ^∞ x^(a−1) e^(−u) du −x^(a−1) e^(−j) dj  I(a)=(((i)^((a−1)/2) )/4)∫_0 ^∞ u^((a−1)/2) e^(−u) +(−i)^(a−1) (1/4)∫_0 ^∞ j^((a−1)/2) e^(−j) dj  =((Γ(((a+1)/2)))/2)cos((π/4)(a+1))  I′(a)=((Γ′(((a+1)/2)))/4)cos((π/4)(a+1))−(π/4) ((Γ(((a+1)/2)))/2)sin((π/4)(a+1))  I′′(a)=((Γ′′(((a+1)/2)))/8)cos((π/4)(a+1))−(π/4).((Γ′(((a+1)/2)))/4)sin((π/4)(a+1))−(π/(16))Γ′(((a+1)/2))sin((π/4)(a+1))−(π^2 /(32)).Γ(((a+1)/2))cos((π/4)(a+1))  I′′(0)=((Γ′′((1/2)))/(2(√2)))−((πΓ′((1/2)))/( 8(√2)))−(π^(5/2) /(32))                    =((πψ((1/2))+ψ′((1/2))(√π))/(2(√2)))−((π(√π))/(8(√2)))ψ((1/2))−(π^(5/2) /(32))      =((π(√π))/(8(√2)))(γ+log(4))−(π^(5/2) /(32))−((π(γ+log(4))/(2(√2)))+((ψ′((1/2))(√π))/(2(√2)))

I(a)=0xasin(x2)dxI(a)=12i0xaeix2xaeix2dxx2=iux2=ijI(a)=140xa1euduxa1ejdjI(a)=(i)a1240ua12eu+(i)a1140ja12ejdj=Γ(a+12)2cos(π4(a+1))I(a)=Γ(a+12)4cos(π4(a+1))π4Γ(a+12)2sin(π4(a+1))I(a)=Γ(a+12)8cos(π4(a+1))π4.Γ(a+12)4sin(π4(a+1))π16Γ(a+12)sin(π4(a+1))π232.Γ(a+12)cos(π4(a+1))I(0)=Γ(12)22πΓ(12)82π5232=πψ(12)+ψ(12)π22ππ82ψ(12)π5232=ππ82(γ+log(4))π5232π(γ+log(4)22+ψ(12)π22

Answered by mathmax by abdo last updated on 31/Jan/21

Φ=_(x=(√t))   ∫_0 ^∞  ln^2 ((√t))sin(t)(2t)dt=(1/2)∫_0 ^∞  ln^2 (t) tsint dt  ϕ(a) =∫_0 ^∞  t^(a+1)  sint dt  =∫_0 ^∞ e^((a+1)lnt) sint dt ⇒ϕ^′ (a)=∫_0 ^∞ lnt .e^((a+1)lnt) sint dt  ⇒ϕ^((2)) (a) =∫_0 ^∞ ln^2 t .t^(a+1) sint dt ⇒ϕ^((2)) (0)=∫_0 ^∞ ln^2 t .tsint dt =2Φ  ϕ(a) =−Im(∫_0 ^∞  t^(a+1)  e^(−it) dt) and   ∫_0 ^∞  t^(a+1)  e^(−it) dt =_(it=u)   ∫_0 ^∞  ((u/i))^(a+1)  e^(−u)  (du/i)  =(1/i^(a+2) )∫_0 ^∞  u^(a+2−1)  e^(−u)  du =(1/((e^((iπ)/2) )^(a+2) ))×Γ(a+2)  =e^(−((iπ)/2)(a+2)) .Γ(a+2) =Γ(a+2){cos((π/2)(a+2))−isin((π/2)(a+2))} ⇒  ϕ(a)=sin(((πa)/2)+π).Γ(a+2) =−sin(((πa)/2)).Γ(a+2)   (witha>−2)  Γ(a+2) =Γ(a+1 +1) =(a+1)Γ(a+1) =a(a+1)Γ(a) ⇒  ϕ(a) =−a(a+1)sin(((πa)/2)).Γ(a)=w(a).Γ(a) ⇒  ϕ^′ (a) =W^, (a).Γ(a)+w(a).Γ^′ (a)  w^′ (a)=−{(2a+1)sin(((πa)/2))+(a^2  +a)(π/2)cos(((πa)/2))} ⇒  ϕ^, (a)=−{(2a+1)sin(((πa)/2))+(π/2)(a^2  +a)cos(((πa)/2))}.Γ(a)  −(a^2  +a)sin(((πa)/2)).Γ^′ (a).....be continued...

Φ=x=t0ln2(t)sin(t)(2t)dt=120ln2(t)tsintdtφ(a)=0ta+1sintdt=0e(a+1)lntsintdtφ(a)=0lnt.e(a+1)lntsintdtφ(2)(a)=0ln2t.ta+1sintdtφ(2)(0)=0ln2t.tsintdt=2Φφ(a)=Im(0ta+1eitdt)and0ta+1eitdt=it=u0(ui)a+1eudui=1ia+20ua+21eudu=1(eiπ2)a+2×Γ(a+2)=eiπ2(a+2).Γ(a+2)=Γ(a+2){cos(π2(a+2))isin(π2(a+2))}φ(a)=sin(πa2+π).Γ(a+2)=sin(πa2).Γ(a+2)(witha>2)Γ(a+2)=Γ(a+1+1)=(a+1)Γ(a+1)=a(a+1)Γ(a)φ(a)=a(a+1)sin(πa2).Γ(a)=w(a).Γ(a)φ(a)=W,(a).Γ(a)+w(a).Γ(a)w(a)={(2a+1)sin(πa2)+(a2+a)π2cos(πa2)}φ,(a)={(2a+1)sin(πa2)+π2(a2+a)cos(πa2)}.Γ(a)(a2+a)sin(πa2).Γ(a).....becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com