All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 161900 by HongKing last updated on 23/Dec/21
0<x;y;z<1(1−x)(1−y)(1−z)=xyzFind:Ω=min(1−xxy+1−yyz+1−zzx)
Answered by aleks041103 last updated on 24/Dec/21
1−x−y−z+xy+xz+yz=2xyz1−xxy+1−yyz+1−zzx==z−zx+x−xy+y−yzxyz==1−2xyzxyz=1xyz−2Weneedtofindmaxofxyz:(1−x)(1−y)(1−z)=xyz1z−1=xy(1−x)(1−y)⇒z=11+xy(1−x)(1−y)=(1−x)(1−y)(1−x)(1−y)+xy==(1−x)(1−y)+xy(1−x)(1−y)+xy−xy(1−x)(1−y)+xy==1+xy1−x−y+2xy=z(x,y)⇒f(x,y,z)=xyz(x,y)==xy+x2y21−x−y+2xyfx=(1+2xy1−x−y+2xy−x2y(2y−1)(1−x−y+2xy)2)y=0fy=(1+2xy1−x−y+2xy+xy2(2x−1)(1−x−y+2xy)2)x=0⇒(1−x−y+2xy)2+2xy(1−x−y+2xy)+x2y(2x−1)=0⇒(1−x−y+2xy)2+2xy(1−x−y+2xy)+y2x(2y−1)=0⇒x2(2x−1)y=y2x(2y−1)⇒x(2x−1)=y(2y−1)=a⇒x,yaresolutionsto2p2−p−a=0x=y(1−2x+2x2)2+2x2(1−2x+2x2)+x3(2x−1)=0...
Commented by HongKing last updated on 28/Dec/21
thankyoudearSircool
Terms of Service
Privacy Policy
Contact: info@tinkutara.com