Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 64333 by Chi Mes Try last updated on 16/Jul/19

∫_( 0) ^(π/2)   (1/(1+tan x)) dx =

π/2011+tanxdx=

Commented by mathmax by abdo last updated on 16/Jul/19

let I =∫_0 ^(π/2)   (dx/(1+tanx)) changement tanx =t give  I =∫_0 ^(+∞)    (dt/((1+t^2 )(1+t)))  let decompose F(t)=(1/((t+1)(t^2  +1)))  F(t)=(a/(t+1)) +((bt+c)/(t^2  +1))  a=lim_(t→−1) (t+1)F(t) =(1/2)  lim_(t→+∞)  tF(t) =0 =a+b ⇒b=−(1/2) ⇒F(t) =(1/(2(t+1))) +((−(1/2)t +c)/(t^2  +1))  F(0)=1 =(1/2) +c ⇒c=(1/2) ⇒F(t) =(1/(2(t+1))) −(1/2) ((t−1)/(t^2  +1)) ⇒  I =∫_0 ^∞ ((1/(2(t+1)))−(1/4)((2t)/(t^2  +1)))dt +(1/2)∫_0 ^∞  (dt/(t^2  +1))  =(1/2)[ln∣t+1∣−(1/2)ln(t^2  +1)]_0 ^(+∞)  +(π/4)  =(1/2)[ln∣((t+1)/(√(t^2  +1)))∣]_0 ^(+∞)  +(π/4) =0 +(π/4) ⇒ I =(π/4) .

letI=0π2dx1+tanxchangementtanx=tgiveI=0+dt(1+t2)(1+t)letdecomposeF(t)=1(t+1)(t2+1)F(t)=at+1+bt+ct2+1a=limt1(t+1)F(t)=12limt+tF(t)=0=a+bb=12F(t)=12(t+1)+12t+ct2+1F(0)=1=12+cc=12F(t)=12(t+1)12t1t2+1I=0(12(t+1)142tt2+1)dt+120dtt2+1=12[lnt+112ln(t2+1)]0++π4=12[lnt+1t2+1]0++π4=0+π4I=π4.

Commented by Tony Lin last updated on 17/Jul/19

∫_0 ^(π/2) (1/(1+tanx))dx  =∫_0 ^(π/2) ((cosx)/(cosx+sinx))dx  =∫_0 ^(π/2) ((cos(cosx−sinx))/((cosx+sinx)(cosx−sinx)))dx  =∫_0 ^(π/2) ((cos^2 x−cosxsinx)/(cos^2 x−sin^2 x))dx  =(1/2)∫_0 ^(π/2) ((cos2x+1−sin2x)/(cos2x))dx  =(1/2)∫_0 ^(π/2) dx−(1/2)∫_0 ^(π/2) tan2xdx+(1/2)∫_0 ^(π/2) sec2xdx  =(π/4)

0π211+tanxdx=0π2cosxcosx+sinxdx=0π2cos(cosxsinx)(cosx+sinx)(cosxsinx)dx=0π2cos2xcosxsinxcos2xsin2xdx=120π2cos2x+1sin2xcos2xdx=120π2dx120π2tan2xdx+120π2sec2xdx=π4

Answered by Rio Michael last updated on 16/Jul/19

begin with  ∫(1/(1+tanx))dx  I = ∫(1/(1+tanx))dx      use the substitution u = tanx  I = ∫(1/((1+u^2 )(1+u)))du  I = (1/2)∫((1/(1+u^2 )) + (1/(1+u)))du  I = (1/2)∫((1/(1+u^2 ))−(1/2) ((2u)/(1+u^2 )) + (1/(1+u)))du  I = (1/2)(arctanu−(1/2)ln(1+u^2 )+ln(1+u))  I = ⌈ (1/2)(x−ln(secx) + ln(1+tanx))⌉_0 ^(π/2)   I = (1/2)((π/2)+ln(sin(π/2)+cos(π/2))) = (π/4)

beginwith11+tanxdxI=11+tanxdxusethesubstitutionu=tanxI=1(1+u2)(1+u)duI=12(11+u2+11+u)duI=12(11+u2122u1+u2+11+u)duI=12(arctanu12ln(1+u2)+ln(1+u))I=12(xln(secx)+ln(1+tanx))0π2I=12(π2+ln(sinπ2+cosπ2))=π4

Answered by Tanmay chaudhury last updated on 17/Jul/19

I=∫_0 ^(π/2) ((cosx)/(cosx+sinx))dx  =∫_0 ^(π/2) ((cos((π/2)−x))/(cos((π/2)−x)+sin((π/2)−x)))dx  =∫_0 ^(π/2) ((sinx)/(sinx+cox))dx  2I=∫_0 ^(π/2) ((cosx)/(sinx+cosx))+((sinx)/(cosx+sinx))dx  2I=∫_0 ^(π/2) dx  I=(π/4)

I=0π2cosxcosx+sinxdx=0π2cos(π2x)cos(π2x)+sin(π2x)dx=0π2sinxsinx+coxdx2I=0π2cosxsinx+cosx+sinxcosx+sinxdx2I=0π2dxI=π4

Terms of Service

Privacy Policy

Contact: info@tinkutara.com