All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 144530 by EDWIN88 last updated on 26/Jun/21
∫0π/2cos2x(2cosx+sinx)2dx=?
Answered by mathmax by abdo last updated on 26/Jun/21
Φ=∫0π2cos2x(2cosx+sinx)2dx⇒Φ=∫0π2cos2x4cos2(x)+4cosxsinx+sin2xdx=∫0π2cos2x3cos2x+4cosxsinx+1dx=∫0π21+cos(2x)2(31+cos(2x)2+2sin(2x)+1)dx=∫0π21+cos(2x)3+3cos(2x)+4sin(2x)+2dx=2x=t=12∫0π1+cost3+3cost+4sint+2dt=tan(t2)=y12∫0∞1+1−y21+y23+31−y21+y2+4.2y1+y2+2×2dy1+y2=∫0∞2(3+3y2+3−3y2+8y+2+2y2)(1+y2)dy=∫0∞2dy(1+y2)(8+2y2+8y)dy=∫0∞dy(y2+1)(y2+4y+4)=∫0∞dy(y+2)2(y2+1)F(y)=1(y+2)2(y2+1)=ay+2+b(y+2)2+cy+dy2+1b=15thedeterminationofcoefficientisnotbad⇒∫F(y)dy=alog∣y+2∣−by+2+c2log(y2+1)+darctany+CΦ=alog∣tan(x)+2∣−btanx+2+c2log(1+tan2x)+dx+C
Answered by Ar Brandon last updated on 26/Jun/21
I=∫0π2cos2x(2cosx+sinx)2dx=∫0π2dx(2+tanx)2=∫0∞2dt(2+t)2(1+t2)=2∫0∞dt(t+2)2(t2+1)=2∫0∞(425⋅1t+2+15⋅1(t+2)2−125⋅4t−3t2+1)dt=2[425ln(t+2)−15⋅1t+2−225ln(t2+1)+325arctan(t)]0∞=[425ln(t2+2t+2t2+1)−25(t+2)+625arctan(t)]0∞=−425ln(2)+15+3π25=425ln(12)+15+3π25
Commented by Ar Brandon last updated on 26/Jun/21
f(t)=1(t+2)2(t2+1)=at+2+b(t+2)2+ct+dt2+1=a(t+2)(t2+1)+b(t2+1)+(ct+d)(t+2)2(t+2)2(t2+1)limft→−2(t)⇒5b=1⇒b=15limft→i(t)⇒(3d−4c)+(3c+4d)i=1⇒{3d−4c=14d+3c=0⇒d=325,c=−425Forcoefficientoft3wehavea+c=0⇒a=425⇒f(t)=425⋅1t+2+15⋅1(t+2)2−125⋅4t−3t2+1
Terms of Service
Privacy Policy
Contact: info@tinkutara.com