Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 144530 by EDWIN88 last updated on 26/Jun/21

 ∫_0 ^( π/2) ((cos^2 x)/((2cos x+sin x)^2 )) dx =?

0π/2cos2x(2cosx+sinx)2dx=?

Answered by mathmax by abdo last updated on 26/Jun/21

Φ=∫_0 ^(π/2)  ((cos^2 x)/((2cosx+sinx)^2 ))dx ⇒Φ=∫_0 ^(π/2)  ((cos^2 x)/(4cos^2 (x)+4cosxsinx +sin^2 x))dx  =∫_0 ^(π/2)  ((cos^2 x)/(3cos^2 x +4cosxsinx +1))dx =∫_0 ^(π/2)  ((1+cos(2x))/(2(3((1+cos(2x))/2)+2sin(2x)+1)))dx  =∫_0 ^(π/2)  ((1+cos(2x))/(3+3cos(2x)+4sin(2x)+2))dx=_(2x=t)   =(1/2)∫_0 ^π  ((1+cost)/(3+3cost +4sint +2))dt   =_(tan((t/2))=y)    (1/2)∫_0 ^∞  ((1+((1−y^2 )/(1+y^2 )))/(3+3((1−y^2 )/(1+y^2 )) +4.((2y)/(1+y^2 )) +2))×((2dy)/(1+y^2 ))  =∫_0 ^∞    (2/((3+3y^2 +3−3y^2  +8y+2+2y^2 )(1+y^2 )))dy  =∫_0 ^∞   ((2dy)/((1+y^2 )(8+2y^2  +8y)))dy =∫_0 ^∞   (dy/((y^2  +1)(y^2  +4y +4)))  =∫_0 ^∞  (dy/((y+2)^2 (y^2  +1)))  F(y)=(1/((y+2)^2 (y^2  +1)))=(a/(y+2))+(b/((y+2)^2 ))+((cy+d)/(y^2  +1))  b=(1/5)   the determination of  coefficient is not bad ⇒  ∫ F(y)dy =alog∣y+2∣−(b/(y+2))+(c/2)log(y^2  +1)+darctany +C  Φ=alog∣tan(x)+2∣−(b/(tanx +2))+(c/2)log(1+tan^2 x)+d x +C

Φ=0π2cos2x(2cosx+sinx)2dxΦ=0π2cos2x4cos2(x)+4cosxsinx+sin2xdx=0π2cos2x3cos2x+4cosxsinx+1dx=0π21+cos(2x)2(31+cos(2x)2+2sin(2x)+1)dx=0π21+cos(2x)3+3cos(2x)+4sin(2x)+2dx=2x=t=120π1+cost3+3cost+4sint+2dt=tan(t2)=y1201+1y21+y23+31y21+y2+4.2y1+y2+2×2dy1+y2=02(3+3y2+33y2+8y+2+2y2)(1+y2)dy=02dy(1+y2)(8+2y2+8y)dy=0dy(y2+1)(y2+4y+4)=0dy(y+2)2(y2+1)F(y)=1(y+2)2(y2+1)=ay+2+b(y+2)2+cy+dy2+1b=15thedeterminationofcoefficientisnotbadF(y)dy=alogy+2by+2+c2log(y2+1)+darctany+CΦ=alogtan(x)+2btanx+2+c2log(1+tan2x)+dx+C

Answered by Ar Brandon last updated on 26/Jun/21

I=∫_0 ^(π/2) ((cos^2 x)/((2cosx+sinx)^2 ))dx=∫_0 ^(π/2) (dx/((2+tanx)^2 ))    =∫_0 ^∞ ((2dt)/((2+t)^2 (1+t^2 )))=2∫_0 ^∞ (dt/((t+2)^2 (t^2 +1)))    =2∫_0 ^∞ ((4/(25))∙(1/(t+2))+(1/5)∙(1/((t+2)^2 ))−(1/(25))∙((4t−3)/(t^2 +1)))dt    =2[(4/(25))ln(t+2)−(1/5)∙(1/(t+2))−(2/(25))ln(t^2 +1)+(3/(25))arctan(t)]_0 ^∞     =[(4/(25))ln(((t^2 +2t+2)/(t^2 +1)))−(2/(5(t+2)))+(6/(25))arctan(t)]_0 ^∞     =−(4/(25))ln(2)+(1/5)+((3π)/(25))=(4/(25))ln((1/2))+(1/5)+((3π)/(25))

I=0π2cos2x(2cosx+sinx)2dx=0π2dx(2+tanx)2=02dt(2+t)2(1+t2)=20dt(t+2)2(t2+1)=20(4251t+2+151(t+2)21254t3t2+1)dt=2[425ln(t+2)151t+2225ln(t2+1)+325arctan(t)]0=[425ln(t2+2t+2t2+1)25(t+2)+625arctan(t)]0=425ln(2)+15+3π25=425ln(12)+15+3π25

Commented by Ar Brandon last updated on 26/Jun/21

f(t)=(1/((t+2)^2 (t^2 +1)))=(a/(t+2))+(b/((t+2)^2 ))+((ct+d)/(t^2 +1))          =((a(t+2)(t^2 +1)+b(t^2 +1)+(ct+d)(t+2)^2 )/((t+2)^2 (t^2 +1)))  lim_(t→−2) f(t)⇒5b=1⇒b=(1/5)  lim_(t→i) f(t)⇒(3d−4c)+(3c+4d)i=1  ⇒ { ((3d−4c=1)),((4d+3c=0)) :}⇒d=(3/(25)), c=−(4/(25))  For coefficient of t^3  we have a+c=0⇒a=(4/(25))  ⇒f(t)=(4/(25))∙(1/(t+2))+(1/5)∙(1/((t+2)^2 ))−(1/(25))∙((4t−3)/(t^2 +1))

f(t)=1(t+2)2(t2+1)=at+2+b(t+2)2+ct+dt2+1=a(t+2)(t2+1)+b(t2+1)+(ct+d)(t+2)2(t+2)2(t2+1)limft2(t)5b=1b=15limfti(t)(3d4c)+(3c+4d)i=1{3d4c=14d+3c=0d=325,c=425Forcoefficientoft3wehavea+c=0a=425f(t)=4251t+2+151(t+2)21254t3t2+1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com