Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 102366 by bobhans last updated on 08/Jul/20

∫_0 ^(π/2)  ((cos x)/(1+cos x+sin x)) dx ?

π/20cosx1+cosx+sinxdx?

Answered by PRITHWISH SEN 2 last updated on 08/Jul/20

I=∫_0 ^(π/2) ((sin x)/(1+cos x+sin x))dx  2I=∫_0 ^(π/2) {1−(1/(1+cos x+sin x))}dx    = (π/2)−(1/2)∫_0 ^(π/2) ((sec^2 (x/2))/(1+tan (x/2)))dx  = (π/2)−ln∣1+tan (x/2)∣_0 ^(π/2)   = (π/2)−ln∣2∣  ∴ I= (𝛑/4) − (1/2)ln2     please check

I=0π2sinx1+cosx+sinxdx2I=0π2{111+cosx+sinx}dx=π2120π2sec2x21+tanx2dx=π2ln1+tanx20π2=π2ln2I=π412ln2pleasecheck

Commented by Dwaipayan Shikari last updated on 08/Jul/20

It is right

Itisright

Commented by PRITHWISH SEN 2 last updated on 08/Jul/20

sorry i made a mistake . thank you.

sorryimadeamistake.thankyou.

Commented by bobhans last updated on 09/Jul/20

yes thank you

yesthankyou

Answered by Dwaipayan Shikari last updated on 08/Jul/20

∫_0 ^(π/2) ((cosx)/(1+cosx+sinx))=∫((sinx)/(1+cosx+sinx))=I  2I=∫_0 ^(π/2) 1−(1/(1+cosx+sinx))dx  2I=(π/2)−2∫_0 ^1 (1/(1+((1−t^2 )/(1+t^2 ))+((2t)/(1+t^2 )))).(1/(1+t^2 ))dt    put   tan(x/2)=t  2I=(π/2)−2∫_0 ^1 (1/(2(1+t)))dt  2I=(π/2)−[log(1+t)]_0 ^1   2I=(π/2)−log2  I=(π/4)−(1/2)log2

0π2cosx1+cosx+sinx=sinx1+cosx+sinx=I2I=0π2111+cosx+sinxdx2I=π220111+1t21+t2+2t1+t2.11+t2dtputtanx2=t2I=π220112(1+t)dt2I=π2[log(1+t)]012I=π2log2I=π412log2

Answered by mathmax by abdo last updated on 08/Jul/20

I =∫_0 ^(π/2)  ((cosx)/(1+cosx +sinx))dx cha7gement tan((x/2))=t give  I =∫_0 ^1  (((1−t^2 )/(1+t^2 ))/(1+((1−t^2 )/(1+t^2 )) +((2t)/(1+t^2 ))))×((2dt)/(1+t^2 )) =2∫_0 ^1  ((1−t^2 )/((1+t^2  +1−t^2  +2t)(t^2 +1)))dt  =∫_0 ^1  ((1−t^2 )/((t+1)(t^2 +1)))dt =∫_0 ^(1 ) ((1−t)/(t^2  +1))dt =∫_0 ^1  (dt/(t^2  +1)) −(1/2)∫_0 ^1  ((2t)/(t^2  +1))dt  =[arctan(t)]_0 ^1  −(1/2) [ln(t^2  +1)]_0 ^1  =(π/4)−((ln(2))/2)

I=0π2cosx1+cosx+sinxdxcha7gementtan(x2)=tgiveI=011t21+t21+1t21+t2+2t1+t2×2dt1+t2=2011t2(1+t2+1t2+2t)(t2+1)dt=011t2(t+1)(t2+1)dt=011tt2+1dt=01dtt2+112012tt2+1dt=[arctan(t)]0112[ln(t2+1)]01=π4ln(2)2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com