All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 154080 by iloveisrael last updated on 14/Sep/21
Ω=∫0π2ln2(1+sint1−sint)dt
Answered by mindispower last updated on 14/Sep/21
=∫0π24ln2(1+tg(x2)1−tg(x2))dxy=tg(x2)⇒dx=2dy1+y2=8∫01ln2(1−y1+y)1+y2dyy=1−x1+x⇒dy=−2dx(1+x)2Ω=8∫01ln2(x)1+(1−x1+x)2.2dx(1+x)2=8∫01ln2(x)1+x2dx=8∫01∑n⩾0(−x2)nln2(x)dx=8∑n⩾0(−1)n∫01x2nln2(x)dx∫01x2nln2(x)dx=∫0∞t2e−(2n+1)tdt1(2n+1)3∫0∞t2e−t=2(1+2n)3Ω=16∑n⩾0(−1)n(1+2n)3=16∑n⩾0(1(1+4n)3−1(4n+3)3)=1664∑n⩾0(1(n+14)3−1(n+34)3)=1664(Ψ3(14)−Ψ3(34))
Terms of Service
Privacy Policy
Contact: info@tinkutara.com