Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 113821 by 675480065 last updated on 15/Sep/20

∫_0 ^(π/2) ln(2−sinx)dx

0π2ln(2sinx)dx

Commented by Dwaipayan Shikari last updated on 15/Sep/20

I(a)=∫_0 ^(π/2) log(2+asinx)dx  I′(a)=∫_0 ^(π/2) ((sinx)/(2+asinx))dx  I′(a)=(1/a)∫_0 ^(π/2) 1−(2/(2+asinx))  I′(a)=(π/(2a))−2∫_0 ^(π/2) (1/(2+asinx))dx  I′(a)=(π/(2a))−4∫_0 ^(π/2) (1/(2+((2at)/(1+t^2 )))).(1/(1+t^2 ))dt                (tan(x/2)=t)  I′(a)=(π/(2a))−4∫_0 ^1 (1/(2+2t^2 +2at))dt  I′(a)=(π/(2a))−2∫_0 ^1 (1/((t+(a/2))^2 +1−(a^2 /4)))dt  I′(a)=(π/(2a))−2(1/( (√(1−(a^2 /4))))).[tan^(−1) ((2t+a)/( (√(4−a^2 ))))]_0 ^1   I(a)=(π/2)log(a)−∫(4/( (√(4−a^2 ))))(tan^(−1) (√((2+a)/(2−a))) −tan^(−1) (a/( (√(4−a^2 )))))....  .....

I(a)=0π2log(2+asinx)dxI(a)=0π2sinx2+asinxdxI(a)=1a0π2122+asinxI(a)=π2a20π212+asinxdxI(a)=π2a40π212+2at1+t2.11+t2dt(tanx2=t)I(a)=π2a40112+2t2+2atdtI(a)=π2a2011(t+a2)2+1a24dtI(a)=π2a211a24.[tan12t+a4a2]01I(a)=π2log(a)44a2(tan12+a2atan1a4a2).........

Answered by mathdave last updated on 15/Sep/20

solution   let  A=∫_0 ^(π/2) ln[2(1−(1/2)sinx)]dx=ln2∫^(π/2) dx+∫^(π/2) (1−(1/2)sinx)dx  A=(π/2)ln2+∫_0 ^(π/2) (1−(1/2)sinx)dx  let I=∫_0 ^(π/2) (1−(1/2)sinx)dx.........(1)

solutionletA=0π2ln[2(112sinx)]dx=ln2π2dx+π2(112sinx)dxA=π2ln2+0π2(112sinx)dxletI=0π2(112sinx)dx.........(1)

Commented by mathdave last updated on 15/Sep/20

Commented by mathdave last updated on 15/Sep/20

Commented by mathdave last updated on 15/Sep/20

Commented by Tawa11 last updated on 06/Sep/21

great sir

greatsir

Answered by Olaf last updated on 15/Sep/20

I = ∫_0 ^(π/2) ln(2−sinx)dx  (1/(1−(1/2)sinx)) = Σ_(n=0) ^∞ ((sin^n x)/2^n )  ((−(1/2)cosx)/(1−(1/2)sinx)) = −(1/2)Σ_(n=0) ^∞ cosx((sin^n x)/2^n )  ln(1−(1/2)sinx) = −(1/2)Σ_(n=0) ^∞ ((sin^(n+1) x)/(2^n (n+1)))  I = (π/2)ln2+∫_0 ^(π/2) ln(1−(1/2)sinx)dx  I = (π/2)ln2−∫_0 ^(π/2) Σ_(n=0) ^∞ ((sin^(n+1) x)/(2^(n+1) (n+1)))dx  I = (π/2)ln2−∫_0 ^(π/2) Σ_(n=1) ^∞ ((sin^n x)/(n2^n ))dx  I = (π/2)ln2−Σ_(n=1) ^∞ (1/(n2^n ))∫_0 ^(π/2) sin^n xdx  W_n  = ∫_0 ^(π/2) sin^n xdx (Wallis)  I = (π/2)ln2−Σ_(n=1) ^∞ (W_n /(n2^n ))...

I=0π2ln(2sinx)dx1112sinx=n=0sinnx2n12cosx112sinx=12n=0cosxsinnx2nln(112sinx)=12n=0sinn+1x2n(n+1)I=π2ln2+0π2ln(112sinx)dxI=π2ln20π2n=0sinn+1x2n+1(n+1)dxI=π2ln20π2n=1sinnxn2ndxI=π2ln2n=11n2n0π2sinnxdxWn=0π2sinnxdx(Wallis)I=π2ln2n=1Wnn2n...

Answered by mathmax by abdo last updated on 15/Sep/20

let I =∫_0 ^(π/2) ln(2−sinx)dx  ⇒I =∫_0 ^(π/2) ln(2)+ln(1−(1/2)sinx)dx  =(π/2)ln(2) +∫_0 ^(π/2)  ln(1−(1/2)sinx)dx  let f(a) =∫_0 ^(π/2) ln(1−asinx)dx  with0<a<1  f^′ (a) =∫_0 ^(π/2) ((−sinx)/(1−asinx)) dx =_(tan((x/2))=t)  −∫_0 ^1   (((2t)/(1+t^2 ))/(1−a((2t)/(1+t^2 ))))×((2dt)/(1+t^2 ))  =−∫_0 ^1   ((4t)/((1+t^2 )(1+t^2 −2at))) dt  =−4 ∫_0 ^1  ((tdt)/((t^2  +1)(t^2 −2at +1)))  let decomoose F(t) =(t/((t^2 −2at+1)(t^2  +1)))  t^2 −2at +1=0→Δ^′  =a^2 −1<0 ⇒F(t) =((αt +β)/(t^2 −2at +1)) +((mt +n)/(t^(2 )  +1))  ⇒(αt+β)(t^2  +1)+(mt+n)(t^2 −2at +1) =t ⇒  αt^3  +αt +βt^2  +β  +mt^3 −2amt^2 +mt +nt^2 −2ant +n =t ⇒  (α+m)t^3  +(β−2am +n)t^2  +(α+m−2an)t +β+n =t ⇒   { ((α+m =0)),((β−2am +n =0    and  { ((α+m −2an =1)),((β+n =0  ⇒)) :})) :}   { ((m=−α          and      { ((−2an =1)),((β =−n    ⇒ n =−(1/(2a)))) :})),((−2aα =0  )) :}  and α=0 ⇒m=0 ⇒F(t) =((1/(2a))/(t^2 −2at +1)) +((−(1/(2a)))/(t^2  +1))  =(1/(2a)){(1/(t^2 −2at +1))−(1/(t^2  +1))} ⇒  f^′ (a) =−(2/a)∫_0 ^1  (dt/(t^2 −2at +1)) +(2/a) ∫_0 ^1  (dt/(t^2  +1))  =(2/a)×(π/4) −(2/a) ∫_0 ^1  (dt/(t^2 −2at +1)) =(π/(2a))−(2/a) ∫_0 ^1  (dt/(t^2 −2at +1))  but ∫_0 ^1  (dt/(t^2 −2at +1)) =∫_0 ^1  (dt/(t^2 −2at +a^2 +1−a^2 )) =∫_0 ^1  (dt/((t−a)^2  +1−a^2 ))  =_(t−a =(√(1−a^2 ))u)    ∫_((−a)/(√(1−a^2 ))) ^((1−a)/(√(1−a^2 )))       ((√(1−a^2 ))/((1−a^2 )(1+u^2 )))du  =(1/(√(1−a^2 ))){ arctan(((1−a)/(√(1−a^2 ))))+arctan((a/(√(1−a^2 ))))} ⇒  f(a) =(π/2)lna  −2 ∫  (1/(a(√(1−a^2 )))) arctan(((1−a)/(√(1−a^2 ))))da−2∫(1/(a(√(1−a^2 )))) arctan((a/(√(1−a^2 ))))da  ....be continued ....

letI=0π2ln(2sinx)dxI=0π2ln(2)+ln(112sinx)dx=π2ln(2)+0π2ln(112sinx)dxletf(a)=0π2ln(1asinx)dxwith0<a<1f(a)=0π2sinx1asinxdx=tan(x2)=t012t1+t21a2t1+t2×2dt1+t2=014t(1+t2)(1+t22at)dt=401tdt(t2+1)(t22at+1)letdecomooseF(t)=t(t22at+1)(t2+1)t22at+1=0Δ=a21<0F(t)=αt+βt22at+1+mt+nt2+1(αt+β)(t2+1)+(mt+n)(t22at+1)=tαt3+αt+βt2+β+mt32amt2+mt+nt22ant+n=t(α+m)t3+(β2am+n)t2+(α+m2an)t+β+n=t{α+m=0β2am+n=0and{α+m2an=1β+n=0{m=αand{2an=1β=nn=12a2aα=0andα=0m=0F(t)=12at22at+1+12at2+1=12a{1t22at+11t2+1}f(a)=2a01dtt22at+1+2a01dtt2+1=2a×π42a01dtt22at+1=π2a2a01dtt22at+1but01dtt22at+1=01dtt22at+a2+1a2=01dt(ta)2+1a2=ta=1a2ua1a21a1a21a2(1a2)(1+u2)du=11a2{arctan(1a1a2)+arctan(a1a2)}f(a)=π2lna21a1a2arctan(1a1a2)da21a1a2arctan(a1a2)da....becontinued....

Commented by mathmax by abdo last updated on 16/Sep/20

we have ∫  (1/(a(√(1−a^2 )))) arctan(((1−a)/(√(1−a^2 ))))da  =_(a =cost)     ∫ (1/(cost sint)) arctan(((1−cost)/(sint)))(−sint)dt  =−∫  (1/(cost)) arctan(((2sin^2 ((t/2)))/(2sin((t/2))cos((t/2)))))dt  =−∫  (1/(cost)) arctan(tan((t/2))dt =−(1/2) ∫   (t/(cost)) dt  =_(tan((t/2))=z)    −(1/2) ∫   ((2arctan(z))/((1−z^2 )/(1+z^2 ))) ((2dz)/(1+z^2 ))  =−2 ∫   ((arctan(z))/(1−z^2 )) dz.....be continued...

wehave1a1a2arctan(1a1a2)da=a=cost1costsintarctan(1costsint)(sint)dt=1costarctan(2sin2(t2)2sin(t2)cos(t2))dt=1costarctan(tan(t2)dt=12tcostdt=tan(t2)=z122arctan(z)1z21+z22dz1+z2=2arctan(z)1z2dz.....becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com