Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 160358 by Ar Brandon last updated on 28/Nov/21

∫_0 ^(π/2) ln(sinx)ln(cosx)dx

0π2ln(sinx)ln(cosx)dx

Answered by amin96 last updated on 28/Nov/21

sin(x)=t   (dt/dx)=cos(x)=(√(1−t^2 ))  𝛀=∫_0 ^1 ((ln(t)ln((√(1−t^2 ))))/( (√(1−t^2 ))))dt=(1/2)∫_0 ^1 ((ln(t)ln(1−t^2 ))/( (√(1−t^2 ))))dt  t^2 =x    (dx/dt)=2t=2(√x)     𝛀=(1/4)∫_0 ^1 ((ln((√x))ln(1−x))/( (√x) (√(1−x))))dx=(1/8)∫_0 ^1 ((((√(1−x)))ln(x)ln(1−x))/( (√x)×(1−x)))dx=  =−(1/8)Σ_(n=1) ^∞ H_n ∫_0 ^1 x^(n−(1/2)) (1−x)^(1/2) ln(x)dx=  =−(1/8)ΣH_n (Σ(((−1)^(n+1) )/n))∫_0 ^1 x^(n−(1/2)) (1−x)^(1/2) (x−1)^n dx=  =(1/8)Σ_(n=1) ^∞ H_n {Σ_(n=1) ^∞ (1/n)∫_0 ^1 x^(n−(1/2)) (1−x)^(n+(1/2)) dx}=  =(1/8)Σ_(n=1) ^∞ H_n {Σ_(n=1) ^∞ (1/n)∫_0 ^1 x^((n+(1/2))−1) (1−x)^((n+(3/2))−1) dx}=  =(1/8)Σ_(n=1) ^∞ H_n {Σ_(n=1) ^∞ (1/n)𝛃(n+(1/2); n+(3/2))}

sin(x)=tdtdx=cos(x)=1t2Ω=01ln(t)ln(1t2)1t2dt=1201ln(t)ln(1t2)1t2dtt2=xdxdt=2t=2xΩ=1401ln(x)ln(1x)x1xdx=1801(1x)ln(x)ln(1x)x×(1x)dx==18n=1Hn01xn12(1x)12ln(x)dx==18ΣHn(Σ(1)n+1n)01xn12(1x)12(x1)ndx==18n=1Hn{n=11n01xn12(1x)n+12dx}==18n=1Hn{n=11n01x(n+12)1(1x)(n+32)1dx}==18n=1Hn{n=11nβ(n+12;n+32)}

Commented by Ar Brandon last updated on 28/Nov/21

I wish it is further simplified.

Iwishitisfurthersimplified.

Commented by amin96 last updated on 28/Nov/21

   do you know the answer?

do you know the answer?

Commented by Ar Brandon last updated on 29/Nov/21

Yeah

Yeah

Commented by Ar Brandon last updated on 29/Nov/21

(π/2)ln^2 2−(π^3 /(48))

π2ln22π348

Commented by amin96 last updated on 29/Nov/21

∫_0 ^(π/2) xln(sinx)ln(cosx)dx     The answer to this integral

0π2xln(sinx)ln(cosx)dxThe answer to this integral

Commented by Ar Brandon last updated on 29/Nov/21

∫_0 ^(π/2) xln(sinx)ln(cosx)dx=(π^2 /8)ln^2 2−(π^4 /(192))  ∫_0 ^(π/2) xln(sinx)ln(cosx)dx=(π/4)∫_0 ^(π/2) ln(sinx)ln(cosx)dx

0π2xln(sinx)ln(cosx)dx=π28ln22π41920π2xln(sinx)ln(cosx)dx=π40π2ln(sinx)ln(cosx)dx

Terms of Service

Privacy Policy

Contact: info@tinkutara.com