Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 138799 by TheSupreme last updated on 18/Apr/21

∫_0 ^(π/2) ln(tan(x)−α)dx=...  α∈C

0π2ln(tan(x)α)dx=...αC

Answered by mathmax by abdo last updated on 19/Apr/21

Φ=∫_0 ^(π/2) ln(tanx−α)dx   ⇒Φ=_(tanx=t)   ∫_0 ^∞  ln(t−α)(dt/(1+t^2 ))  =∫_0 ^∞  ((ln(t−α))/(1+t^2 ))dt  let α=x+iy ⇒t−α =t−x−iy=(√((t−x)^2 +y^2 ))e^(iarctan(−(y/(t−x))))   ⇒Φ=∫_0 ^∞  ((ln((√((t−x)^2 +y^2 )))−iarctan((y/(t−x))))/(t^2  +1))dt  =(1/2)∫_0 ^∞  ((ln((t−x)^2 +y^2 ))/(t^2  +1))dt−i∫_0 ^∞  ((arctan((y/(t−x))))/(t^2  +1))dt   we have  ∫_0 ^∞  ((log((t−x)^2 +y^2 ))/(t^2  +1))dt =∫_0 ^∞  ((log(t^2 −2xt +x^2 +y^2 ))/(t^2  +1))dt  𝛟(x)=∫_0 ^∞     ((log(t^2 −2xt +x^2  +y^2 ))/(t^2 +1))dt ⇒  ϕ^′ (x)=∫_0 ^∞ ((−2t+2x)/((t^2 −2xt+x^2 +y^2 )(t^2  +1)))dt  we must decompose  F(t)=((−2t+2x)/((t^2 −2xt+x^2  +y^2 )(t^2  +1))) ....  ∫_0 ^∞  ((arctan((y/(t−x))))/(t^2  +1))dt =∫_0 ^∞  ((+^− (π/2)−arctan(((t−x)/y)))/(t^2  +1))dt  =+^(− ) (π^2 /4)−∫_0 ^∞   ((arctan(t−x))/(t^2  +1))dt +(π/2)arctany  Ψ(x)=∫_0 ^∞   ((arctan(t−x))/(t^2  +1))dt ⇒Ψ^′ (x)=∫_0 ^∞   ((−1)/((1+(t−x)^2 )(t^2  +1)))dt  =−∫_0 ^∞    (dt/((t^2 −2xt +x^2  +1)(t^2  +1)))  rest decomposition...be continued...

Φ=0π2ln(tanxα)dxΦ=tanx=t0ln(tα)dt1+t2=0ln(tα)1+t2dtletα=x+iytα=txiy=(tx)2+y2eiarctan(ytx)Φ=0ln((tx)2+y2)iarctan(ytx)t2+1dt=120ln((tx)2+y2)t2+1dti0arctan(ytx)t2+1dtwehave0log((tx)2+y2)t2+1dt=0log(t22xt+x2+y2)t2+1dtφ(x)=0log(t22xt+x2+y2)t2+1dtφ(x)=02t+2x(t22xt+x2+y2)(t2+1)dtwemustdecomposeF(t)=2t+2x(t22xt+x2+y2)(t2+1)....0arctan(ytx)t2+1dt=0+π2arctan(txy)t2+1dt=+π240arctan(tx)t2+1dt+π2arctanyΨ(x)=0arctan(tx)t2+1dtΨ(x)=01(1+(tx)2)(t2+1)dt=0dt(t22xt+x2+1)(t2+1)restdecomposition...becontinued...

Commented by mathmax by abdo last updated on 19/Apr/21

sorry  ∫_0 ^∞  ((+^− (π/2)−arctan(((t−x)/y)))/(t^2  +1))dt  =+^−  (π^2 /4)−∫_0 ^∞  ((arctan((t/y)−(x/y)))/(t^2  +1))dt so we considere  Ψ(x)=∫_0 ^∞  ((arctan((t/y)−(x/y)))/(t^2  +1))dt ⇒  Ψ^′ (y)=∫_0 ^∞ ((−1)/(y(1+((t/y)−(x/y))^2 )(t^2  +1)))dt=.....

sorry0+π2arctan(txy)t2+1dt=+π240arctan(tyxy)t2+1dtsoweconsidereΨ(x)=0arctan(tyxy)t2+1dtΨ(y)=01y(1+(tyxy)2)(t2+1)dt=.....

Commented by mathmax by abdo last updated on 19/Apr/21

let try another way Φ=∫_0 ^∞ ((log(t−α))/(1+t^2 )) dt =Ψ(α) ⇒  Ψ^′ (α) =∫_0 ^∞   ((−1)/((t−α)(t^2  +1)))dt  let decompose  F(t) =(1/((t−α)(t^2  +1))) ⇒F(t)=(a/(t−α)) +((bt+c)/(t^2  +1))  a=(1/(α^2  +1))  ,lim_(t→+∞) tF(t)=0 =a+b ⇒b=−(1/(α^2  +1))  F(0)=−(1/α)=−(a/α) +c ⇒1=a−αc ⇒αc=a−1 ⇒c=((a−1)/α)  =(((1/(α^2 +1))−1)/α) =−(α^2 /(α(α^2  +1)))=−(α/(α^2  +1)) ⇒F(t)=(1/((α^2  +1)(t−α)))  +((−(1/(α^2  +1))t −(α/(α^2  +1)))/(t^2  +1)) ⇒∫_0 ^∞  F(t)dt  =(1/(α^2  +1))∫_0 ^∞ (dt/(t−α))−(1/(2(α^2 +1)))∫_0 ^∞   ((2t)/(t^(2 ) +1))dt−(α/(α^2  +1))×(π/2)  =(1/(α^2  +1))[log(((t−α)/( (√(t^(2 ) +1)))))]_0 ^∞ −((πα)/(α^2  +1))  =(1/(α^2  +1))(−log(−α))−((πα)/(2(α^2  +1))) ⇒Ψ(α)=−∫ ((log(−α))/(α^2  +1))dα  −(π/4)log(1+α^2 ) +C....be continued...

lettryanotherwayΦ=0log(tα)1+t2dt=Ψ(α)Ψ(α)=01(tα)(t2+1)dtletdecomposeF(t)=1(tα)(t2+1)F(t)=atα+bt+ct2+1a=1α2+1,limt+tF(t)=0=a+bb=1α2+1F(0)=1α=aα+c1=aαcαc=a1c=a1α=1α2+11α=α2α(α2+1)=αα2+1F(t)=1(α2+1)(tα)+1α2+1tαα2+1t2+10F(t)dt=1α2+10dttα12(α2+1)02tt2+1dtαα2+1×π2=1α2+1[log(tαt2+1)]0παα2+1=1α2+1(log(α))πα2(α2+1)Ψ(α)=log(α)α2+1dαπ4log(1+α2)+C....becontinued...

Answered by phanphuoc last updated on 18/Apr/21

u=tgx−> du/1+u^2 =dx  I=∫_0 ^∞ ln(u+α)/u^2 +1du  I=2πiRes(f(u),i)=πln(i+α)

u=tgx>du/1+u2=dxI=0ln(u+α)/u2+1duI=2πiRes(f(u),i)=πln(i+α)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com