Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 157096 by amin96 last updated on 19/Oct/21

∫_0 ^(π/2) xsin(x)ln(sin(x))dx=?

0π2xsin(x)ln(sin(x))dx=?

Answered by mindispower last updated on 19/Oct/21

(−xcos(x)+sin(x))ln(sin(x))]_0 ^(π/2) +∫_0 ^(π/2)  ((xcos^2 (x))/(sin(x)))−cosx  dx  =∫_0 ^(π/2) ((x(1−sin^2 (x)))/(sin(x)))dx−1  =∫_0 ^(π/2) (x/(sin(x)))dx−∫_0 ^(π/2) xsin(x)dx−1  =∫_0 ^(π/2) (x/(sin(x)))dx+[xcos(x)−sin(x)]_0 ^(π/2) −1  =∫_0 ^(π/2) (x/(sin(x)))dx−2,tg((x/2))=u  =∫_0 ^1 ((2arctan(u))/u)du=2∫_0 ^1 Σ_(k≥0) (((−1)^k )/(2k+1))u^(2k) −2  =2Σ_(k≥0) (((−1)^k )/((2k+1)^2 ))−2=2(G−1)

(xcos(x)+sin(x))ln(sin(x))]0π2+0π2xcos2(x)sin(x)cosxdx=0π2x(1sin2(x))sin(x)dx1=0π2xsin(x)dx0π2xsin(x)dx1=0π2xsin(x)dx+[xcos(x)sin(x)]0π21=0π2xsin(x)dx2,tg(x2)=u=012arctan(u)udu=201k0(1)k2k+1u2k2=2k0(1)k(2k+1)22=2(G1)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com