Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 182648 by cortano1 last updated on 12/Dec/22

  ∫_0 ^(π/4)  ((sec^2 x)/(tan x−sec x)) dx =?

π/40sec2xtanxsecxdx=?

Answered by Acem last updated on 12/Dec/22

 tan x − sec x= t  ..... m   sec x (sec x− tan x) dx= dt   sec x dx= ((−dt)/t)  ... i   ∗ sec^2  x − tan^2  x= 1 ⇔ (sec x+ tan x) (sec x− tan x)=1   ⇒ sec x + tan x= ((−1)/t)   ∗   &  sec x − tan x= −t   ∗∗^( From m)    Sum stars: sec x= −(1/2)((1/t) + t) ...ii       i, ii in integ. : I= ∫ ((sec x sec x dx)/(tan x− sec x))= (1/2)∫ ((((1/t) + t))/t^( 2) ) dt   I= (1/2) ∫ ((1/t) + (1/t^3 )) dt,  from m { ((m=0   : t= −1)),((m= (π/4) : t= 1−(√2)  )) :}   a= (1/2) ∫_(−1) ^( 1−(√2))  ((1/t) + (1/t^3 )) dt   a= (1/2) [ln ∣t∣ − (1/(2 t^2 ))]∣_( −1) ^(1−(√2))    ≈ − 1. 648

tanxsecx=t.....msecx(secxtanx)dx=dtsecxdx=dtt...isec2xtan2x=1(secx+tanx)(secxtanx)=1secx+tanx=1t&secxtanx=tFrommSumstars:secx=12(1t+t)...iii,iiininteg.:I=secxsecxdxtanxsecx=12(1t+t)t2dtI=12(1t+1t3)dt,fromm{m=0:t=1m=π4:t=12a=12112(1t+1t3)dta=12[lnt12t2]1121.648

Answered by FelipeLz last updated on 12/Dec/22

     tan(x) = u → du = sec^2 (x)dx       x = 0 → u = 0       x = (π/4) → u = 1  I =∫_0 ^(π/4) ((sec^2 (x))/(tan(x)−sec(x)))dx = ∫_0 ^1 (1/(u−(√(u^2 +1))))du = ∫_0 ^1 (1/(u−(√(u^2 +1))))×((u+(√(u^2 +1)))/(u+(√(u^2 +1))))du = ∫_0 ^1 ((u+(√(u^2 +1)))/(u^2 −u^2 −1))du    I = −∫_0 ^1 udu−∫_0 ^1 (√(u^2 +1))du   I = −∫_0 ^(π/4) tan(x)sec^2 (x)dx−∫_0 ^(π/4) sec^3 (x)dx              ∫tan(x)sec^2 (x)dx = sec^2 (x)−∫tan(x)sec^2 (x)dx       2∫tan(x)sec^2 (x)dx = sec^2 (x)       ∫tan(x)sec^2 (x)dx = (1/2)sec^2 (x)          ∫sec^3 (x)dx = sec(x)tan(x)−∫sec(x)tan^2 (x)dx        ∫sec^3 (x)dx = sec(x)tan(x)−∫sec^3 (x)dx+∫sec(x)dx       2∫sec^3 (x)dx = sec(x)tan(x)+ln∣sec(x)+tan(x)∣       ∫sec^3 (x)dx = (1/2)sec(x)tan(x)+(1/2)ln∣sec(x)+tan(x)∣     I = −(1/2)[sec^2 (x)]_0 ^(π/4) −(1/2)[sec(x)tan(x)+ln∣sec(x)+tan(x)∣]_0 ^(π/4)   I = −(1/2)[((√2))^2 −1^2 ]−(1/2)[(√2)×1+ln∣(√2)+1∣−1×0−ln∣1+0∣]  I = −(1/2)[1+(√2)+ln(1+(√2))]

tan(x)=udu=sec2(x)dxx=0u=0x=π4u=1I=π/40sec2(x)tan(x)sec(x)dx=101uu2+1du=101uu2+1×u+u2+1u+u2+1du=10u+u2+1u2u21duI=10udu10u2+1duI=π/40tan(x)sec2(x)dxπ/40sec3(x)dxtan(x)sec2(x)dx=sec2(x)tan(x)sec2(x)dx2tan(x)sec2(x)dx=sec2(x)tan(x)sec2(x)dx=12sec2(x)sec3(x)dx=sec(x)tan(x)sec(x)tan2(x)dxsec3(x)dx=sec(x)tan(x)sec3(x)dx+sec(x)dx2sec3(x)dx=sec(x)tan(x)+lnsec(x)+tan(x)sec3(x)dx=12sec(x)tan(x)+12lnsec(x)+tan(x)I=12[sec2(x)]0π/412[sec(x)tan(x)+lnsec(x)+tan(x)]0π/4I=12[(2)212]12[2×1+ln2+11×0ln1+0]I=12[1+2+ln(1+2)]

Answered by MJS_new last updated on 12/Dec/22

∫((sec^2  x)/(tan x −sec x))dx=∫(dx/(sin 2x −2cos x))=       [t=tan (x/2) → dx=((2dt)/(t^2 +1))]  =2∫((t^2 +1)/((t−1)^3 (t+1)))dt=  =(1/2)∫((1/(t−1))−(1/(t+1)))dt+∫((t+1)/((t−1)^3 ))dt=  =(1/2)ln ((t−1)/(t+1)) −(t/((t−1)^2 ))=  =(1/2)(ln ∣tan x −sec x∣ −(tan x + sec x)tan x)+C  ⇒ answer is (1/2)ln (−1+(√2)) −((1+(√2))/2)

sec2xtanxsecxdx=dxsin2x2cosx=[t=tanx2dx=2dtt2+1]=2t2+1(t1)3(t+1)dt==12(1t11t+1)dt+t+1(t1)3dt==12lnt1t+1t(t1)2==12(lntanxsecx(tanx+secx)tanx)+Cansweris12ln(1+2)1+22

Terms of Service

Privacy Policy

Contact: info@tinkutara.com