All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 182648 by cortano1 last updated on 12/Dec/22
∫π/40sec2xtanx−secxdx=?
Answered by Acem last updated on 12/Dec/22
tanx−secx=t.....msecx(secx−tanx)dx=dtsecxdx=−dtt...i∗sec2x−tan2x=1⇔(secx+tanx)(secx−tanx)=1⇒secx+tanx=−1t∗&secx−tanx=−t∗∗FrommSumstars:secx=−12(1t+t)...iii,iiininteg.:I=∫secxsecxdxtanx−secx=12∫(1t+t)t2dtI=12∫(1t+1t3)dt,fromm{m=0:t=−1m=π4:t=1−2a=12∫−11−2(1t+1t3)dta=12[ln∣t∣−12t2]∣−11−2≈−1.648
Answered by FelipeLz last updated on 12/Dec/22
tan(x)=u→du=sec2(x)dxx=0→u=0x=π4→u=1I=∫π/40sec2(x)tan(x)−sec(x)dx=∫101u−u2+1du=∫101u−u2+1×u+u2+1u+u2+1du=∫10u+u2+1u2−u2−1duI=−∫10udu−∫10u2+1duI=−∫π/40tan(x)sec2(x)dx−∫π/40sec3(x)dx∫tan(x)sec2(x)dx=sec2(x)−∫tan(x)sec2(x)dx2∫tan(x)sec2(x)dx=sec2(x)∫tan(x)sec2(x)dx=12sec2(x)∫sec3(x)dx=sec(x)tan(x)−∫sec(x)tan2(x)dx∫sec3(x)dx=sec(x)tan(x)−∫sec3(x)dx+∫sec(x)dx2∫sec3(x)dx=sec(x)tan(x)+ln∣sec(x)+tan(x)∣∫sec3(x)dx=12sec(x)tan(x)+12ln∣sec(x)+tan(x)∣I=−12[sec2(x)]0π/4−12[sec(x)tan(x)+ln∣sec(x)+tan(x)∣]0π/4I=−12[(2)2−12]−12[2×1+ln∣2+1∣−1×0−ln∣1+0∣]I=−12[1+2+ln(1+2)]
Answered by MJS_new last updated on 12/Dec/22
∫sec2xtanx−secxdx=∫dxsin2x−2cosx=[t=tanx2→dx=2dtt2+1]=2∫t2+1(t−1)3(t+1)dt==12∫(1t−1−1t+1)dt+∫t+1(t−1)3dt==12lnt−1t+1−t(t−1)2==12(ln∣tanx−secx∣−(tanx+secx)tanx)+C⇒answeris12ln(−1+2)−1+22
Terms of Service
Privacy Policy
Contact: info@tinkutara.com