Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 104312 by Ar Brandon last updated on 20/Jul/20

∫_0 ^(π/4) ((√(sin^2 θ+2))/(sinθ))dθ

0π4sin2θ+2sinθdθ

Answered by mathmax by abdo last updated on 21/Jul/20

I =∫_0 ^(π/4)  ((√(sin^2 θ+2))/(sinθ))dθ ⇒I =∫_0 ^(π/4)  ((sinθ(√(1+(2/(sin^2 θ)))))/(sinθ))dθ =∫_0 ^(π/4) (√(1+(2/(1−cos^2 θ))))dθ  we have 1+tan^2 θ =(1/(cos^2 θ)) ⇒cos^2 θ =(1/(1+tan^2 θ)) ⇒1−cos^2 θ=1−(1/(1+tan^2 θ))  =((tan^2 θ)/(1+tan^2 θ)) ⇒(2/(1−cos^2 θ)) =2×((1+tan^2 θ)/(tan^2 θ)) ⇒  I =∫_0 ^(π/4) (√(1+((2+2tan^2 θ)/(tan^2 θ))))dθ  =∫_0 ^(π/4) (√((3tan^2 θ+2)/(tan^2 θ)))dθ  =_(tanθ =x)   =∫_0 ^1 (√((3x^2 +2)/x^2 )) (dx/(1+x^2 ))  =∫_0 ^1   ((√(3x^2 +2))/(x(1+x^2 )))dx  =(√3)∫_0 ^1  ((√(x^2  +(2/3)))/(x(1+x^2 )))dx  cha7gement x =(√(2/3))shu give u =argsh((√(3/2))x)  I =(√3)∫_0 ^(arhsh((√(3/2))))   (2/3)×((chu)/((√(2/3))sh(u)(1+(2/3)sh^2 u)))×(√(2/3))ch(u)du  =2(√3)∫_0 ^(ln((√(3/2))+(√(1+(9/4)))))    ((ch^2 u)/(shu(3+2sh^2 u)))du    and this integral  can be solved  ...be continued...

I=0π4sin2θ+2sinθdθI=0π4sinθ1+2sin2θsinθdθ=0π41+21cos2θdθwehave1+tan2θ=1cos2θcos2θ=11+tan2θ1cos2θ=111+tan2θ=tan2θ1+tan2θ21cos2θ=2×1+tan2θtan2θI=0π41+2+2tan2θtan2θdθ=0π43tan2θ+2tan2θdθ=tanθ=x=013x2+2x2dx1+x2=013x2+2x(1+x2)dx=301x2+23x(1+x2)dxcha7gementx=23shugiveu=argsh(32x)I=30arhsh(32)23×chu23sh(u)(1+23sh2u)×23ch(u)du=230ln(32+1+94)ch2ushu(3+2sh2u)duandthisintegralcanbesolved...becontinued...

Commented by Ar Brandon last updated on 21/Jul/20

wow wow wow ! superb. Thanks so much ��

Commented by Ar Brandon last updated on 21/Jul/20

    ((ch^2 u)/(shu(3+2sh^2 u)))=((1+sh^2 u)/(shu(3+2sh^2 u)))  ((1+t^2 )/(t(3+2t^2 )))=((at+b)/(2t^2 +3))+(c/t)=(((at+b)t+c(2t^2 +3))/(t(2t^2 +3)))  t→0 , c=(1/3) , a+2c=1, a=(1/3) , b=0  ⇒((1+sh^2 u)/(shu(3+2sh^2 u)))=(((1/3)shu)/(3+2sh^2 u))+((1/3)/(shu))  ⇒∫((ch^2 u)/(shu(3+2sh^2 u)))du=(1/3){∫((shu du)/(3+2ch^2 −2))+∫(du/(shu))}  =(1/3){(1/(√2))∫((d((√2)chu))/(1+2ch^2 u))+∫((shu du)/(ch^2 u−1))}  =(1/3){(1/(√2))Arctan((√2)chu)−Arctanh(chu)}

ch2ushu(3+2sh2u)=1+sh2ushu(3+2sh2u)1+t2t(3+2t2)=at+b2t2+3+ct=(at+b)t+c(2t2+3)t(2t2+3)t0,c=13,a+2c=1,a=13,b=01+sh2ushu(3+2sh2u)=13shu3+2sh2u+13shuch2ushu(3+2sh2u)du=13{shudu3+2ch22+dushu}=13{12d(2chu)1+2ch2u+shuduch2u1}=13{12Arctan(2chu)Arctanh(chu)}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com