All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 137784 by mathocean1 last updated on 06/Apr/21
∫0π6dxsinx=?
Answered by EnterUsername last updated on 06/Apr/21
∫dxsinx=ln∣cosecx−cotx∣+C∫dxsinx=∫sinxsin2xdx=∫sinx1−cos2xdx=∫duu2−1=∫(12(u−1)−12(u+1))du=12ln∣u−1u+1∣+C=12ln∣cosx−1cosx+1∣+C=12ln∣(cosx−1)2cos2x−1∣+C=12ln∣(cosx−1)2sin2x∣+C=ln∣cosx−1sinx∣+C=ln∣cosecx−cotx∣+C∫0π6dxsinx=ln∣2−3∣−limx→0(ln∣cosecx−cotx∣)
Answered by mathmax by abdo last updated on 06/Apr/21
∫0π6dxsinx=limξ→0∫ξπ6dxsinxwehave∫ξπ6dxsinx=tan(x2)=t∫tan(ξ2)2−32dt(1+t2)×2t1+t2=∫tan(ξ2)2−3dtt=[log∣t∣]tan(ξ2)2−3=log(2−3)−log∣tan(x2)∣⇒limξ→0∫ξπ6dxsinx=+∞thisintegralisdivergent!
Terms of Service
Privacy Policy
Contact: info@tinkutara.com