All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 65202 by arcana last updated on 26/Jul/19
∫0πcos2θ1−2acosθ+a2dθ,a2<1answer?
Answered by Tanmay chaudhury last updated on 26/Jul/19
formulatakenfromSlloney1−a21−2acosθ+a2=1+2acosθ+2a2cos2θ+2a3cos3θ+...nowI(r)=∫0πcosrθ1−2acosθ+a2dθ=11−a2∫0π1−a21−2acosθ+a2×cosrθdθ=11−a2∫0π(1+2acosθ+2a2cos2θ+2a3cos3θ+...)cosrθdθ11−a2∫0π(cosrθ+2acosθcosrθ+..+2arcosrθ.cosrθ+...)dθagainformula∫0πcosmθcosnθdθ=∫0πsinmθsinnθdθ=0whenm≠nifm=nthen∫0πcosmθcosnθdθ=π2soI(r)=11−a2×(0+0+...+2ar×π2)I(r)=arπ1−a2sorequiredanswer=I(2)=a2π1−a2
Commented by arcana last updated on 26/Jul/19
gracias!
Terms of Service
Privacy Policy
Contact: info@tinkutara.com