Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 65100 by arcana last updated on 25/Jul/19

∫_0 ^π (dθ/((a+cosθ)^2 )), a>1

0πdθ(a+cosθ)2,a>1

Commented by ~ À ® @ 237 ~ last updated on 25/Jul/19

let  g(a)=∫_0 ^π (dθ/(a+cosθ ))   then  ∫_0 ^π (dθ/((a+cosθ)^2 ))=−(dg/(da  ))      so let find g(a)  g(a)=∫_0 ^π (dθ/((a−1)+2cos^2 ((θ/2))))=∫_0 ^(π/2) ((2dx)/((a−1)[cos^2 x+sin^2 x]+2cos^2 x))=2∫_0 ^(π/2) (dx/((a+1)cos^2 x +(a−1)sin^2 x))  then  ((g(a))/2)= ∫_0 ^(π/2)  (((1/(cos^2 x)) dx)/((a+1)+(a−1)tan^2 x))   we have a>1⇒(a+1)+(a−1)tan^2 x=(a+1)[1+((√((a−1)/(a+1)))tanx)^2 ]  ((g(a))/2)=(1/(√(a^2 −1)))∫_0 ^(π/2)    (((√((a−1)/(a+1))) (1+tan^2 x) dx)/(1+((√(((a−1)/(a+1)) )) tanx)^2 ))          So   we get  g(a)=(2/(√(a^2 −1))) [arctan((√(((a−1)/(a+1))  )) tanx)]_0 ^(π/2) = (π/(√(a^2 −1)))   then  (dg/da)=π.((((−2a)/(2(√(a^2 −1))))/(a^2 −1)))= ((−πa)/((a^2 −1)^(3/2) ))    that leads us to  ∫_(0 ) ^π  (dθ/((a+cosθ)^2 )) = ((πa)/((a^2 −1)^(3/2) ))

letg(a)=0πdθa+cosθthen0πdθ(a+cosθ)2=dgdasoletfindg(a)g(a)=0πdθ(a1)+2cos2(θ2)=0π22dx(a1)[cos2x+sin2x]+2cos2x=20π2dx(a+1)cos2x+(a1)sin2xtheng(a)2=0π21cos2xdx(a+1)+(a1)tan2xwehavea>1(a+1)+(a1)tan2x=(a+1)[1+(a1a+1tanx)2]g(a)2=1a210π2a1a+1(1+tan2x)dx1+(a1a+1tanx)2Sowegetg(a)=2a21[arctan(a1a+1tanx)]0π2=πa21thendgda=π.(2a2a21a21)=πa(a21)32thatleadsusto0πdθ(a+cosθ)2=πa(a21)32

Commented by turbo msup by abdo last updated on 25/Jul/19

let ϕ(a) =∫_0 ^π (dθ/(a+cosθ)) we have  ϕ^′ (a)=−∫_0 ^π   (dθ/((a+cosθ)^2 )) ⇒  ∫_0 ^π   (dθ/((a+cosθ)^2 )) =−ϕ^′ (a)  ϕ(a) =_(tan((θ/2))=x)   ∫_0 ^∞   (1/(a+((1−x^2 )/(1+x^2 )))) ((2dx)/(1+x^2 ))  =∫_0 ^∞    ((2dx)/(a+ax^2  +1−x^2 )) =∫_0 ^∞   ((2dx)/((a−1)x^2 +a+1))  =(2/(a−1)) ∫_0 ^∞    (dx/(x^2  +((a+1)/(a−1))))  =_(x =(√((a+1)/(a−1)))u)  (2/(a−1)) ∫_0 ^∞   (1/(((a+1)/(a−1))(1+u^2 )))(√((a+1)/(a−1)))du  =(2/(a+1)) ((√(a+1))/(√(a−1))) ∫_0 ^∞  (du/(1+u^2 ))  =(2/(√(a^2 −1))) (π/2) =(π/(√(a^2 −1))) ⇒  ϕ^′ (a) =π{(a^2 −1)^(−(1/2)) }^′   =π(−(1/2))(2a)(a^2 −1)^(−(3/2))   =((−πa)/((a^2 −1)(√(a^2 −1)))) ⇒  ∫_0 ^π   (dθ/((a+cosθ)^2 )) =((πa)/((a^2 −1)(√(a^2 −1))))  if a>1

letφ(a)=π0dθa+cosθwehaveφ(a)=0πdθ(a+cosθ)20πdθ(a+cosθ)2=φ(a)φ(a)=tan(θ2)=x01a+1x21+x22dx1+x2=02dxa+ax2+1x2=02dx(a1)x2+a+1=2a10dxx2+a+1a1=x=a+1a1u2a101a+1a1(1+u2)a+1a1du=2a+1a+1a10du1+u2=2a21π2=πa21φ(a)=π{(a21)12}=π(12)(2a)(a21)32=πa(a21)a210πdθ(a+cosθ)2=πa(a21)a21ifa>1

Commented by arcana last updated on 25/Jul/19

Gracias

Gracias

Commented by arcana last updated on 25/Jul/19

Gracias

Gracias

Commented by turbo msup by abdo last updated on 25/Jul/19

where are you from arcana...

whereareyoufromarcana...

Commented by arcana last updated on 25/Jul/19

Colombia but i can understand coments.  Muchas gracias

Colombiabuticanunderstandcoments.Muchasgracias

Commented by mathmax by abdo last updated on 25/Jul/19

you are most welcome in that platform...

youaremostwelcomeinthatplatform...

Commented by arcana last updated on 26/Jul/19

de nuevo gracias

denuevogracias

Terms of Service

Privacy Policy

Contact: info@tinkutara.com