Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 116216 by bemath last updated on 02/Oct/20

∫_0 ^π  ((ln (1+(1/2)cos x))/(cos x)) dx ?

π0ln(1+12cosx)cosxdx?

Answered by Bird last updated on 02/Oct/20

let f(a) =∫_0 ^π  ((ln(1+acosx))/(cosx))dx with−1<a<1    f^′ (a) =∫_0 ^π  (dx/(1+acosx))  =_(tan((x/2))=t)    ∫_0 ^∞    ((2dt)/((1+t^2 )(1+a.((1−t^2 )/(1+t^2 )))))  =2∫_0 ^∞    (dt/(1+t^2 +a−at^2 ))  =2∫_0 ^∞   (dt/((1−a)t^2  +1+a))  =(2/((1−a)))∫_0 ^∞   (dt/(t^2  +((1+a)/(1−a))))  =_(t=(√((1+a)/(1+a)))u)    (2/(1−a)).((1−a)/(1+1))∫_0 ^∞   (1/(u^2  +1)).((√(1+a))/(1−a))u  =(2/( (√(1−a^2 )))).(π/2) =(π/( (√(1−a^2 )))) ⇒  f(a) =∫  (π/( (√(1−a^2 ))))da +c  =π arcsina +c  f(0) =0=c ⇒f(a) =π arcsin(a)  and ∫_0 ^π  ((ln(1+(1/2)cosx))/(cosx))dx  =f((1/2)) =π arcsin((1/2))=(π^2 /6)

letf(a)=0πln(1+acosx)cosxdxwith1<a<1f(a)=0πdx1+acosx=tan(x2)=t02dt(1+t2)(1+a.1t21+t2)=20dt1+t2+aat2=20dt(1a)t2+1+a=2(1a)0dtt2+1+a1a=t=1+a1+au21a.1a1+101u2+1.1+a1au=21a2.π2=π1a2f(a)=π1a2da+c=πarcsina+cf(0)=0=cf(a)=πarcsin(a)and0πln(1+12cosx)cosxdx=f(12)=πarcsin(12)=π26

Commented by bemath last updated on 02/Oct/20

thank you

thankyou

Commented by mnjuly1970 last updated on 02/Oct/20

very nice solution .thank you   mr bird..

verynicesolution.thankyoumrbird..

Commented by mathmax by abdo last updated on 02/Oct/20

you are welcome

youarewelcome

Terms of Service

Privacy Policy

Contact: info@tinkutara.com